
0250-SIP-2017-PIEEE

1

 Abstract—Design methods and tools evolved to support the

principle of "separation of concerns" in order to manage

engineering complexity. Accordingly, most engineering tool suites

are vertically integrated but have limited support for integration

across disciplinary boundaries. Cyber-Physical Systems (CPS)

challenge these established boundaries between disciplines, and

thus, the status quo on the tools market. The question is how to

create the foundations and technologies for semantically precise

model and tool integration that enable reuse of existing

commercial and open source tools in domain-specific design

flows. In this paper, we describe the lessons learned in the design

and implementation of an experimental design automation tool

suite, OpenMETA, for complex CPS in the vehicle domain. The

conceptual foundation for the integration approach is platform-

based design: OpenMETA is architected by introducing two key

platforms, the Model Integration Platform and Tool Integration

Platform. The Model Integration Platform includes methods and

tools for the precise representation of semantic interfaces among

modeling domains. The key new components of the Model

Integration Platform are Model Integration Languages and the

mathematical framework and tool for the compositional

specification of their semantics. The Tool Integration Platform is

designed for executing highly automated design-space

exploration. Key components of the platform are tools for

constructing design spaces and model composers for analytics

workflows. The paper concludes with describing experience and

lessons learned by using OpenMETA in drivetrain design and by

adapting OpenMETA to substantially different CPS application

domains.

Index Terms — design automation; cyber-physical systems;

model integration; tool integration

I. INTRODUCTION

YBER-PHYSICAL SYSTEMS (CPS) are engineered systems

where functionality emerges from the networked

interaction of computational and physical processes.

This work was supported in part by the Defense Advanced Research Project

Agency under awards #FA-8650-10-C-7075, #FA8650-10-C-7082 #

HR0011-12-C-0008, and by the National Science Foundation under award #
CNS-1035655.

J. Sztipanovits, T. Bapty, S. Neema, X. Koutsoukos are with the Institute for

Software Integrated Systems of Vanderbilt University, TN 37212 USA (e-
mail: janos.sztipanovits@vanderbilt.edu). Zs. Lattmann is with A^3 by

Airbus, CA 95113 USA (e-mail: zsolt.lattmann@airbus-sv.com) and E.

Jackson is with Microsoft Research, WA 80305 USA (e-mail:
ejackson@msr.com).

The tight interaction of physical and computational

components creates new generations of smart systems whose

impacts are revolutionary; this is evident today in emerging

autonomous vehicles and military platforms, intelligent

buildings, smart energy systems, intelligent transportation

systems, robots, or smart medical devices. Emerging industrial

platforms such as the Internet of Things (IoT), Industrial

Internet (II), Fog Computing and Industrie 4.0 are triggering a

“gold rush” towards new markets and accelerating the

development of societal-scale systems such as connected

vehicles, which, in addition to the synergy of computational

and physical components, involve humans (H-CPS).

As for most engineered systems, CPS design flows are

dominantly model-based. The model-based design process

results in a formal description (model) of the system S, using

as input the set of requirements R that must be satisfied in

some environment E (Fig. 1).

If S, R and E can be represented formally, the system design

can be framed as a synthesis process [1] that yields S such that

when composed with the environment E, it satisfies the

requirements R, or 𝑆 ∥ 𝐸 ⊨ 𝑅. The automation of the design

process assumes the availability of precise, formal models for

R and E restricted to a semantic domain where the synthesis

process is computationally feasible. However, in CPS, there

are significant challenges with deep impact on model-based

design flows:

 Heterogeneity: Heterogeneity is an essential property of

CPS. Much of the advantages of CPS design are expected

to come from the synthesis of traditionally isolated

modeling domains (creating novel modeling platforms in

design flows [2][3]) and from the explicit representation

of interdependences across modeling domains, which is

frequently neglected if the separation-of-concerns

principle [4] is used incorrectly.

 Modeling uncertainties: In model-based design R, E and S

are models of some referent systems (conceptual, logical

Model and Tool Integration Platforms for

Cyber-Physical System Design

Janos Sztipanovits, Fellow, IEEE, Ted Bapty, Xenofon Koutsoukos, Zsolt Lattmann, Sandeep Neema,

and Ethan Jackson, Member, IEEE

C

Figure 1: Model-based design

Model-based
Design Process

R E

S

Requirements Environment

System

mailto:janos.sztipanovits@vanderbilt.edu

0250-SIP-2017-PIEEE

2

or physical) or their properties. The model is always a

simplification, preserving specifically chosen features of

the referent. The relationship between models and their

referents plays key role in the effectiveness of the design

process. In cyber domains, this relationship is usually an

abstraction/refinement relation where property

preservation between an abstract model and its referent

(e.g. a software implementation) is an achievable goal. In

physical domains this relationship is fundamentally

different. There is always some level of uncertainty

between a model and its physical referent that may be

aleatoric (irreducible) originating from the underlying

physics, or epistemic arising from the lack of knowledge

[69]. Measuring, expressing and propagating uncertainties

in CPS design models is an important challenge.

 Complexity and scalability: Complexity and scalability of

verifying properties of models are significant concerns for

all model-based design approaches that target real-life

systems. Selecting modeling abstractions with scalable

symbolic or simulation-based verification methods is a

key approach in the cyber side of CPS and may result in

significant complexity reduction [1]. However, on the

physical side, adjusting the level of abstractions used in

modeling without considering the underlying physics

inevitably leads to increase in epistemic uncertainty that

may make the verification unsound and/or incomplete.

This paper is based on our experience with

constructing a fully integrated model-based design tool

chain prototype for the “make” process of complex CPS,

as part of the Defense Advanced Research Project

Agency (DARPA) Adaptive Vehicle Make (AVM)

program [5]. The resulting design automation tool chain,

OpenMETA [6], was expected to contribute to the

following goals of the program:

 Improved design productivity: Shortening

development times for complex CPS was a primary

goal of the program. OpenMETA contributed to

achieving this goal with the following technical

approaches: (a) extending model-based design to

component - and model - based design, (b) pursuing

correct-by-construction design methods, and (c)

executing rapid requirements trade-offs across

design domains.

 Incorporation of manufacturing related constraints

into the design flow to help moving towards foundry-

like manufacturing capability for CPS, decreasing

the need for lengthy and expensive design –

manufacture – integrate - test – redesign iterations.

 Support of crowdsourced design by providing a web-

based collaboration platform for ad-hoc,

geographically distributed design teams and access

to dominantly open source, cloud deployed tool

configurations for very low cost.

The project focused on integrating and testing an

automated, model-based design flow for the power train and

hull of the Fast Adaptable Next-Generation Ground Vehicle

(FANG) ground vehicle [7][8] using primarily open source

tool components. Given the program focus, our team explored

the fundamental challenges of CPS design automation

emerging from a practical constraint: domain-specific CPS

design flows are constructed to support synergistically a

design methodology but need to be implemented by

integrating a wide range of heterogeneous tool components.

This leads to – what Alberto Sangiovanni-Vincentelli and

Manfred Broy calls – the “tyranny of tools” in design

automation [9], when not the design problems, but available

tools dictate the abstractions that designers should use in

problem solving.

The significance of the problem has long been recognized

by industry. In fact the challenge of creating end-to-end

integrated domain/product – specific tool chains is considered

to be a primary impediment for the faster penetration of

model-based design in CPS industry. Large system companies

face immense pressures to deliver safe and complex systems at

low cost. Tools are at the heart of their engineering process

covering the full spectrum of requirements, design,

manufacturing and operations support . The internal tool

landscapes of large aerospace and automotive companies

contain ~3000-5000 distinct tools totaling several hundreds of

millions of dollars in internal investments [10]. End-to-end

tooling for these complex CPS product lines spans too many

technical areas for single tool vendors to fully cover. In

addition, a significant part of the companies’ design flow is

supported by in-house tools that are proprietary and capture

high value design intellectual property (IP). In many areas,

such as drivetrain electronics in the automotive industry,

production tool suites include a combination of in-house and

commercial off the shelf (COTS) tools in the approximate

ratio of 70% and 30%, respectively. The development and use

of in-house tools is not necessarily the result of deficient

COTS offerings, but, rather, it is an essential part of the

innovation process that yields competitive advantage via

improved product quality and productivity. The primary

technology barrier that slows down this process and makes

integration of in-house tools with third party tools extremely

expensive and error prone is the lack of modern tool

integration and deployment platforms.

Seamless integration of end-to-end tool chains for highly

automated execution of design flows is a complex challenge of

which successful examples are rare – even after massive

investment by companies. Vendors provide limited

integration, primarily of their own tools, with a few cross-

vendor integrations for particularly dominant tools (e.g.,

integration with DOORS, Matlab, Word or Excel). This

limitation results in design flows that consist of islands of

integrated tool sub-chains, bridged by various ad-hoc, semi-

automated, or manual stopgaps. These stopgaps impose a

variety of costs: additional work in performing manual

transformations, additional work in guarding against

divergence between multiple representations, and forgone

analysis opportunities, to name just a few.

Truly transformational impact requires an approach for

composing an end-to-end integrated tool chain from a

heterogeneous collection of COTS, open source, and

proprietary tools. The ideal solution would support tools from

multiple vendors, and allow companies themselves to include

the most closely guarded proprietary tools. Such a truly

integrated toolset would yield significant improvements in

productivity and decreases in design time by eliminating the

0250-SIP-2017-PIEEE

3

unnecessary work associated with the existing integration

mechanisms and shortening the learning curves associated

with diverse, un-integrated tool suites.

In spite of its large significance, integrating design tool

chains today relies on ad hoc methods: engineering process

are defined, tools are selected covering parts of the process,

and the emerging isolated islands in the design flow are

manually bridged with huge recurring cost, or patched

together with opportunistically constructed data interchange

mechanisms that cannot be maintained and evolved.

The main contributions of this paper are the integration

technologies developed for CPS design automation tool

chains. This integration technology is structured around three

horizontal integration platforms: the Model Integration

Platform, Tool Integration Platform and Execution Integration

Platform. The primary focus of the paper is the Model and

Tool Integration Platforms representing key technology

components of model-based design. These platforms

incorporate domain agnostic methods and tools for co-

modeling CPS artifacts and engineering processes that can be

instantiated in domain-specific contexts. We use the

OpenMETA design flow that we developed for the FANG

ground vehicle challenge as an example for exposing the

integration challenges. We argue that establishing model- and

tool-integration platforms for CPS design automation helps to

create decoupling between domain-specific, and frequently

proprietary, engineering processes of systems companies from

their actual implementation incorporating a large suite of tools

and extensive IT infrastructure. Since our primary focus is

integration technologies for design automation systems, we do

not intend to provide an exhaustive survey of specific CPS

design methodologies, but leave it to the excellent papers in

the literature [1][2][3][4] [11][12][23].

In Section II we provide an overview of the model-based

design process, the integration architecture in the context of

the OpenMETA design flow and identify the role of the

model- and tool-integration platforms. Section III focuses on

the model-integration platform and provides details on the

methods and tools used for semantic integration. Section IV

focuses on the tool-integration platform. Section V

summarizes the lessons learned and describes current research

directions.

II. OVERVIEW OF THE MODEL-BASED DESIGN PROCESS

As described before, a model-based design process receives

requirement models R, environment models E, and synthesizes

a system model S such that ∥ 𝐸 ⊨ 𝑅 . Naturally, system design

from “scratch” would not be practical, therefore the structure

of the design process must allow for reusing as much design

knowledge – models, processes and tools - as possible. There

are two kinds of design knowledge where reuse is critical:

system models and testing/verification methods with related

tools. These considerations are reflected in the

conceptualization of the design process shown in Fig. 2.

On the modeling side, model-based design is transformed

into model- and component-based design, where previous

design knowledge for the system to be constructed is available

in a Component Model Repository. The repository includes a

set of parameterized component models 𝐶 =

{𝐶𝑖(𝑥, 𝑝)}, each including a parameter vector x and typed ports

p representing the component interface. The component

models are instantiated in specific architectures by setting

their parameter values. For a system model S, 𝐶𝑆 =
𝑐𝑜𝑚𝑝𝑡𝑦𝑝𝑒𝑠(𝑆) denotes the set of component model types

instantiated in S (possibly multiple times) and 𝐶𝑆𝐼 =
𝑐𝑜𝑚𝑝𝑠(𝑆) yields the set of instantiated component models.

The architecture of a system S is defined by a labelled graph

𝐺𝑆, where the vertices are the ports of its components

and the edges represent interactions corresponding to the type

of the connected ports. An architecture is well-formed if

𝐺𝑆 satisfies a set of composition constraints Φ over 𝐺𝑆 derived

from the semantics of the interaction types.

The sets of component types C, and composition constraints

Φ define a design space

 𝐷 ≝ {𝑆|𝐺𝑆 ⊨ Φ, 𝑐𝑜𝑚𝑝𝑡𝑦𝑝𝑒𝑠(𝑆) ⊆ 𝐶}
that includes all possible system architectures that can be

composed from the instances of the parameterized component

library subject to the composition constraints. The design

process needs to synthesize an 𝑆 ∈ 𝐷 design model for which

𝑆 ∥ 𝐸 ⊨ 𝑅.

As Fig. 2. illustrates, the design process that should yield an

acceptable design model is conceptualized as a design space

exploration process that – by using some exploration strategy -

incrementally narrows the size of the initial design space until

(one or more) satisfying design is found. The core components

of this process are the Multidisciplinary Verification, Testing

and Optimization activities that evaluate designs points against

different requirements in R while operating in targeted

environments E. Reusing analysis tools and processes is a

significant goal, therefore we use modeling and model-based

integration. From the point of view of the design automation

process, these evaluations are performed by testbenches that

incorporate specific configurations of tools for implementing

an analysis flow over design models. The goal of the

testbenches is to make a decision if a design satisfies a subset

of the requirements. Testbenches are linked to requirement

categories (e.g. mobility requirements that are tested using a

dynamic simulation testbench) and well suited for model-

based integration. Testbench models that incorporate the

model of an analysis flow and tool interfaces can be

templatized and placed in a Testbed Template Repository. A

Figure 2: Conceptualization of the design process

Testbench
Configuration

Space

R E

S – system model

R
e
q
u
ir
e
m

e
n
ts

E
n
v
ir
o
n
m

e
n
t

Design Space

Component
Model

Repository

Testbench
Template
Repository

Model
Composition

Testbench
Integration

Multidisciplinary Verification, Testing and
Optimization

No

Yes

0250-SIP-2017-PIEEE

4

testbed template is instantiated by configuring it with specific

requirement models, and with a suite of design models

required by the incorporated analysis tools. The Testbench

Integration process deploys a configured testbench for

execution.

The last essential condition for improving reuse in the

design automation process is to enable decoupling between the

system modeling and analysis sides by introducing a Model

Composition process (see Fig. 2) that composes integrated,

analysis-specific system models from the model of the system

architecture 𝐺𝑆 and the set of instantiated component models

𝐶𝑆𝐼 .

A. Overview of an Example Tool Architecture: OpenMETA

The design process described above was prototyped and

tested in the OpenMETA tool suite in designing the power

train and the hull of an infantry amphibious vehicle. This

particular challenge was focused on the design of the

drivetrain and associated mobility subsystems of an infantry

vehicle (Fast Adaptable Next-Generation Ground Vehicle

FANG). Besides the physical (CAD) and functional (CyPhy /

Modelica) requirements of the drivetrain and mobility

subsystems they had to be packaged inside of a predefined

volume in the form of a three dimensional surrogate hull. The

designs were evaluated for driving performance on land and

water as well as for manufacturing lead-time and anticipated

unit manufacturing cost.

Prototyping the conceptual design flow described above

required several categories of tools that had to be integrated to

allow execution of a highly automated workflow. The

integrated tools can be broadly categorized as: a) Authoring

tools – that would allow definition of component models, and

design space models, and to populate component and design

repositories that can be used/reused by system engineers for

designing a specific system, b) Model Composition tools –

that transform, compose, and derive inputs for domain-specific

analysis tools from the system design models, c) Domain-

specific Analysis Testbenches and tools – for analysis and

evaluation of the candidate system using models of

progressively deepening fidelities, and d) Analytics and

Visualization tools – for visualization of analysis results as

well as for interactively conducting design trades.

We will briefly exemplify the usage of these tools in

context of a subset of the FANG vehicle challenge noted

above. The simplified view of the tool configuration is shown

in Fig. 3.

1) Requirements

In OpenMETA requirements inform the testbenches that are

developed and used to assess the candidate design. The

drivetrain model of the FANG vehicle had 19 performance

requirement types that are divided into five subcategories:

Speed, Acceleration, Range, Temperature/Cooling, and Fuel

Economy. The Speed requirement category contains five

maximum speed requirements (forward speed, hill climb on

different surfaces, and reverse speed) and two average speed

requirements. Each requirement has a threshold and an

objective value. The threshold is the pass/fail mark, and the

objective represents the ideal outcome. A score can be

assigned to each metric by comparing it to the threshold and

objective; exceeding the objective will not necessarily have

increased benefit. A design’s overall (weighted) score is

computed based on the requirement structure and analysis

Figure 3: OpenMETA Tool Architecture

Architecture

Exploration Tool

Component

Auth. Tool

Dynamics

Mods.

Control

Mods.

CAD

Mods.

D
a
s
h

b
o

a
rd

 (V
is

u
a
liz

e
r)

Evidence for Performance and Safety Assurance Argumentation: Design-time

Design-time
Multi-Model Analytics Testbenches

Testbench

Configuration

Tool

Architecture Lib.

Analysis Model

Composition Tool

AnalyticsTempl.

Tool Comp. Lib.

Testbench

Integration Tool
Design Space

Auth. Tool

Safety
Testbenches
(verification
based)

Static
Testbenches
(sim. based)

multi-models: semantic integration platform

analytics-flow models: tool integration platform

Requirements

Performance
Testbenches
(multi-objective
optimization)

FEA
Testbenches
(physics-based,
static)

FEA
Testbenches
(physics-based,
dynamic)

Safety
Testbenches
(sim. based)

Safety
Testbenches
(sim. based
probabilistic)

Static

Mods.

Seed Design
Mods.

Component Lib.

0250-SIP-2017-PIEEE

5

results, and represents the quality of the design, which

facilitates the quantitative comparison of different design

solutions.

2) Component Authoring and Repository

The Cyber Physical Component model used in OpenMETA

is a novel construct that was designed to address challenges

unique to Cyber Physical design. The heterogeneity inherent

in Cyber Physical components implied that a singular

formalism and model would not be adequate to represent

components. In the FANG vehicle design, for example, the

Engine was one of the most critical component in terms of its

impact on the design requirements. The power curve of the

engine (a multi-physics model) models its ability to deliver

torque at different engine speeds, and corresponding fuel

consumption, and plays a primary role in assessing the

gradeability (i.e. whether the vehicle will be able to climb a

slope at a desired speed) requirements of the vehicle design.

The physical geometry of the engine (a CAD geometry model)

is a primary determinant of the 3D placement,

manufacturability, and serviceability requirements of the

vehicle design. The second challenge was that these different

models are typically developed in mature engineering tools

(such as Dassault System’s Dymola
1
 tools, or PTC’s Creo

2
)

with significant investment, and represent the knowledge

capital of an organization.

The cyber-physical component model had to leverage these

artifacts without requiring a redesign in a new formalism. The

third challenge was that the component models, as the primary

unit of reuse, and their authoring being decoupled from use,

had to be comprehensively characterized, described, packaged,

curated, and catalogued according to a taxonomy, such that it

would allow a systems engineer to later use the components in

a system design. These challenges were addressed by

developing a component specification language, a component

container format (described in [13][14][15]) to author and

package the components, and a component model exchange to

repository and organize curated components. In OpenMETA

we leveraged GME, a metaprogrammable modeling

environment ([16][17]), and customized it with the component

specification language for authoring components.

Table 1 shows an enumeration of different Engine

components (and their key parameters) authored in the

component specification language (described later) and

included in the component repository for use in the vehicle

design.

3) Design Space Authoring and Repository

Typically in engineering organizations, seed designs are

baseline architectures that have been proven through prior

usage, and constitute the starting point from which new

designs are derived by introducing variations in architectural

topologies and innovating in the component technologies. In

OpenMETA this conceptual process is systematized by

formally representing the baseline architectures using a Cyber

Physical Systems Modeling Language (CyPhyML) (described

1https://www.3ds.com/products-services/catia/products/dymola/latest-

release/
2 https://www.ptc.com/en/cad/creo

in [13]). The (partial) seed design for the vehicle consists of a

drivetrain (engine and transmission), left-hand and right-hand

side drive (drive shaft and final drive), cooling system, fuel

tank, batteries, and software controllers (Engine Control Unit

and Transmission Control Unit), organized in a topology that

represents the interactions (energy flow, signal flow, etc.)

between different subsystems and components.

In OpenMETA these seed designs can be systematically

extended and turned into a design point by introducing

alternative components and parameterization. For example,

the key components of the vehicle design that impact the

Speed and Acceleration requirements are the engine and the

transmission components. The seed design is augmented by

replacing the specific engine component (Deutz BFM1015M

(290HP)), with the set of alternative engines shown in Table 1,

and similarly the single transmission component is replaced

with set of transmission components from the repository. The

discrete design space resulting from the single design point

has the same topological structure, however, now encapsulates

200 (25 engines, 8 transmissions) candidate designs.

4) Design Space Exploration

The OpenMETA design flow is implemented as a multi-

model composition and testing/verification process that

incrementally shapes and refines the design space using

formal, manipulable models [14][15]. The model composition

and refinement process is intertwined with testing and analysis

steps to validate and verify requirements and to guide the

design process toward the least complex, therefore the least

risky and least expensive solutions. The design flow follows a

progressive deepening strategy, starting with early design-

space exploration covering very large design spaces using

abstract, lower fidelity models and progressing toward

increasingly complex, higher fidelity models and focusing on

rapidly decreasing number of candidate designs.

Table 1: Engine components in the repository

0250-SIP-2017-PIEEE

6

The META design flow proceeds in the following main

phases:

1. Combinatorial design space exploration using static

finite domain constraints and architecture evaluation

(Static Exploration Testbench).

2. Behavioral design space exploration by progressively

deepening from qualitative discrete behaviors to

precisely formulated relational abstractions and to

quantitative multi-physics, lumped parameter hybrid

dynamics models using both deterministic and

probabilistic approaches (simulation-based Dynamics

Testbenches and symbolic Safety Verification

Testbenches).

3. Geometric/Structural Design Space Exploration

coupled with physics-based non-linear finite element

analysis of thermal, mechanical and mobility

properties.

4. Cyber design space exploration (both HW and SW)

incorporated in dynamics testbenches.

We gained the following insights with the implementation

of OpenMETA:

1. In a model-based design automation process both

component modeling and analysis flow modeling are

important source of reusability – therefore affordability.

In addition model composition and transformation

technology is essential for composing integrated analysis

models in the form required by the various analysis tools.

2. The complexity of the synthesis process is fundamentally

influenced by the size, granularity and richness of the

model library and the restrictiveness of composition

constraints. In the extreme case, when the component

library includes a single parameterized component that

can potentially satisfy all the requirements, the design

process is reduced to verifying if a satisfying

parameterization exists and to optimizing the system

parameters for some performance metrics by means of the

Multidisciplinary Verification, Testing and Optimization

process.

B. Need for Horizontal Integration Platforms

Automated execution of the design-space exploration

process requires the seamless integration of heterogeneous

models and tools. A core technical challenge in creating

OpenMETA was complementing the traditional, vertically

structured and isolated model-based tool suites with horizontal

integration platforms for models, tools, and executions as

shown in Fig. 4.

The function of the integration platforms are summarized

below.

1. Model Integration Platform. As shown in Fig. 4, a CPS

design-space exploration process cuts across traditionally

isolated design domains supported by a wide range of

tools and valuable model libraries that are accessible in

popular COTS or open source tools. Many of the

languages are complex, not necessarily because of the

innate domain complexity, but auxiliary complexities

caused by an insatiable push for generality and various

incidental tool functions. The CPS design process not

only utilizes these different modeling languages but it

need to exploit their interaction expressed as cross-

domain models. Given the semantic complexity of

integrating and relating heterogeneous models and

modeling languages, we considered model integration as

a fundamental functionality that need to be supported by

specific methods and tools. The Model Integration

Platform includes languages and tools for defining

cross—domain model integration languages, formally

modeling their semantics and the semantics of model

transformations.

2. Tool Integration Platform. Referring to Fig. 3, the

design-space exploration process incorporates a suite of

testbenches that implement analysis processes to

Figure 4. Horizontal Integration Platforms for CPS Design Automation

Components Designs Design Spaces
Analysis
Models

Testbench
Models

Cyber
Models

Job Manager

Local File system and/or Cloud Storage Simulation Trace Files, Analysis Results, Computed Metrics

Reliability
Tools

Verif.
Tools

SW
Synth.

Open
MDAO

Tool Integration Platform

Component
Exporter

Model
Composers

Model Integration Platform

Geometry Dynamics
Analysis Process

Composers

Simulation
Tools

CAD
ToolsExecution Integration Platform

Static
Analysis

Verification
Models

HLA

Composed Analysis/Simulation Models

0250-SIP-2017-PIEEE

7

test/verify satisfaction of requirements. The specification

and integration of testbenches is also model-based,

therefore the Tool Integration Platform incorporates both

– Model Composers for generating the tool-specific

product models for analysis and Analysis Process

Composers generating executable version of testbench

models. The executable testbench models link the tools

incorporated in the analysis flow, the corresponding

product models and the integration models the

appropriate version of the tool integration framework

used: Open MDAO (Multidisciplinary Design Analysis

and Optimization) optimization tool [18] for parametric

optimization, or the High Level Architecture (HLA) for

distributed simulation [19].

3. Execution Integration Platform. The automated execution

of analysis processes invokes a variety of tools that need

to receive and produce models, and need to be scheduled

as the analysis flow requires. The Execution Integration

Platform incorporates the services and mechanisms

required for running the analyses using deployed tools

and generating the analysis artifacts. The first test of the

OpenMETA tool suite was the FANG-1 challenge prize

competition [7][8] focusing on the drivetrain and

mobility subsystems. Since the competition was also a

crowdsourcing experiment with over 1,000 individuals

grouped in over 200 design teams [8], access to the

design tools and model libraries by the competitors

across the country was in itself a major challenge. Our

Execution Integration Platform (VehicleForge) provided

web-based delivery platform for the integrated design

tools, supported their cloud-based deployment through a

software-as-a service delivery model and incorporated a

range of collaboration services for design teams. While

the Execution Integration Platform is an important part of

design automation systems, we do not discuss it in this

paper. For further information see [21].

The horizontal model, tool, and execution integration

platforms adopt the philosophy and key characteristics of

platform-based design [22][23]:

1. Construction of the integration platforms represent

distinct, domain independent challenges.

2. The integration platforms are not just conceptual but

include specific sets of methods, services and tools that

are domain agnostic.

3. We believe that adoption of generic integration platforms

accelerates the construction of design automation tool

chains from reusable components.

In the following sections we will focus on the Model

Integration Platform and Tool Integration Platform, present

our solutions developed first in OpenMETA and use examples

for demonstrating the integration process.

III. MODEL INTEGRATION PLATFORM

We believe that the single most important change to achieve

correct-by-construction design is the introduction and

systematic use of cross-domain modeling. However, creating

design tool chains that cover all potentially relevant CPS

modeling abstractions and satisfy the needs of all application

domains is unrealistic. In addition, tool chains that are highly

configurable to specific application domains are not available.

Consequently, our objective with the introduction of the

Model Integration Platform was to enable the rapid

construction of domain-specific, end-to-end tool suites for

CPS design domains by supporting the modeling of cross-

domain interactions in heterogeneous modeling environments.

In a naïve approach, the challenge of creating an integrated

CPS design automation tool chain crossing different design

domains is considered to be a tool interoperability problem

that can be taken care of with appropriate data conversions

and tool APIs. In complex design domains these approaches

inevitably fail due to the rapid loss of control over the

semantic integrity of design flows. The primary reason for this

is that the key stakeholders – tool vendors on one side and

systems companies on the other side – need to respond to

different pressures that drive their product lifecycles. The

interest of system companies is to control and evolve their

product data and engineering processes and use the best-of-

breed tools for implementing their design flows. Tool

companies are interested in expanding the relevance and

reusability of their tools across product categories and

encapsulating essential parts of end-user design flows.

The role of the Model Integration Platform is to facilitate

decoupling between these two sides by explicitly modeling

their relationship. In the model- and component-based

framework of OpenMETA (see Fig. 2 and 3) we structured the

Model Integration Platform in the following two layers:

1. Tool agnostic Model Integration Layer that incorporates

a Model Integration Language (CyPhyML) for

representing (a) component models, 𝐶(𝑥, 𝑝), (b) designs:

𝑆 = 〈𝐶𝑆𝐼 , 𝐺𝑆〉, (c) design spaces: D, (d) architecture: 𝐺𝑆

and composition constraints: Φ, (e) cross-domain

interactions, (f) data model interfaces for tools, (g)

models of engineering processes and (h) model

transformations for composing analysis models. The

Model Integration Layer is supported by

metaprogrammable modeling and model transformation

tools [16] for rapidly defining and evolving Model

Integration Languages and transformations. Details of the

Model Integration Layer will be discussed in subsections

III.A, III.B and III.C.

2. The Semantic Integration Layer provides methods and

tools for formally representing the semantics of the

elements of the Model Integration Layer. The primary

reason for introducing formal modeling (metamodeling)

of the integration languages, data models and model

transformations is that Model Integration Languages are

designed to be evolvable: as product categories,

engineering processes and tool interfaces are changing,

the integration models need to be evolved without

compromising semantic integrity. Details of the Semantic

Integration Layer will be discussed in subsections III.D

and III.E.

The primary benefit of this approach is that Model

Integration Languages, expressing a tool agnostic view of

product architectures and related engineering processes can be

designed for simplicity: they do not incorporate all the

semantic details present in various domain-specific tools, but

focus on cross domain interactions and composition.

0250-SIP-2017-PIEEE

8

In the next parts of this section we provide highlights from

the Model Integration Language, CyPhyML, that was

developed for the FANG design challenge in OpenMETA and

summarize key features of the selected formal framework

FORMULA [26][27]. However, we emphasize that the

essence of the OpenMETA approach is flexibility; the choices

in the design of CyPhyML were driven by the specific

circumstances of the FANG challenge problem.

A. Developing a Model Integration Language: CyPhyML

The CyPhyML model integration language, as noted ealier,

was designed to serve the needs of performing automated

design-space exploration for the drivetrain and mobility

subsystems of the FANG vehicle [28] to be followed by a hull

design challenge. Consistently with the goals of the

competition, the design process targeted system-level design,

roughly corresponding to conceptual and preliminary design

phases in the usual systems engineering process, with a path

toward detailed design. The targeted granularity was on the

subsystem level including commercial off the shelf (COTS)

components such as engines. While the design space included

embedded controllers, the decomposition hierarchy was

strongly dominated by physical structure.

 The key considerations in the design of CyPhyML were the

followings:

1. Abstraction layers for integrated design flow

2. Granularity and coverage in the component model library

3. Principles used for constructing the design space

4. Scope and depth of the requirements and key

performance parameters

For example, evaluation of a drivetrain design for the

mobility requirement ‘Maximum Speed Hill Climb Sand’

requires a testbench that simulates the lumped parameter

dynamics of the drivetrain model S composed with appropriate

terrain data E. For a given drivetrain architecture composed of

a selected suite of components, the OpenMETA model

composer for lumped parameter dynamics accesses the

dynamics models of the individual components in the

architecture and composes them into a system model that can

be simulated by a simulation engine (OpenMETA used

OpenModelica [29][30] as the primary simulation engine).

The component models and the composition mechanism must

be flexible enough to enable the use of component models of

different levels of fidelity, (even represented in different

modeling languages e.g. Modelica models, Simulink/Stateflow

models, FMUs or Bond Graph models). The 𝑆 ∥ 𝐸

composition of the drivetrain model S and the terrain model E

is specified in the testbench model by modeling the interaction

between the terrain and the drivetrain. The testbench links the

models to the simulation engine to gain an executable for the

evaluation of the ‘Maximum Speed Hill Climb Sand’

performance parameter. Since all design points in the overall

design space have the same interface, the testbench model can

be linked to a design space with many alternative,

parameterized architectures. Using the Open MDAO

(Multidisciplinary Design Analysis and Optimization)

optimization tool [18], a multi-objective parametric

optimization can be performed if the exploration process

requires it.

These type of considerations led to the detailed design of

model integration languages, specifically the Cyber-Physical

Systems Modeling Language (CyPhyML). CyPhyML, is the

composition of several sub-languages as listed below:

 Component Models (CM) that incorporate (a) several

domain models representing various aspects of

component properties, parameters and behaviors, (b) a set

of standard interfaces through which the components can

interact, (c) the mapping between the component

interfaces and the embedded domain models and (d)

constraints expressing cross-domain interactions.

 Design Models (DM) that describe system architectures

using assemblies, components and their interconnections

via the standard interfaces.

 Design Space Models (DSM) that define architectural

and parametric variabilities of design models as

hierarchically layered alternatives for assemblies and

components.

 Analysis Models (AM) that specify data and control

interfaces for analysis tools.

 Testbench Models (TM) that (a) specify regions in the

design space to be used for computing key performance

parameters, (b) define analysis flows for computing key

performance parameters linked to specific requirements

and (c) provide interfaces for visualization.

B. Component Modeling in CyPhyML

Components in CyPhy are the basic units for composing a

design. The component models represent several things about

the actual component, including its physical representations,

connections, its dynamic behavior, properties and parameters.

To achieve correct-by-construction design, the system models

are expected to be heterogeneous multi-physics, multi-

abstraction and multi-fidelity models that also capture cross-

domain interactions. Accordingly, the component models, in

order to be useful, need to satisfy the following generic

requirements:

1. Elaborating and adopting established, mathematically

sound principles for compositionality. The semantics of

composition frameworks are strongly different in

physical dynamics, geometric structure and computing

that needs to precisely defined and integrated.

2. Inclusion of a suite of domain models (e.g., structural

models, multi-physics lumped parameter dynamics,

distributed parameter dynamics, manufacturability), on

different levels of fidelity with explicitly represented

cross-domain interactions.

3. Specification of component interfaces required for

heterogeneous composition. The interfaces need to be

decoupled from the modeling languages used for

capturing the embedded domain models. This decoupling

ensures independence from the modeling tools selected

by the component model developers.

4. Established bounds for composability expressed in terms

of operating regimes where the component models

remains valid.

The CPS component model must be defined according to

the needs of the design process that determines (1) the type of

structural and behavioral modeling views required, (2) the

type of component interactions to be accounted for and (3) the

0250-SIP-2017-PIEEE

9

type of abstractions that must be utilized during design

analytics. We believe that it does not make sense to strive for a

‘generic’ CPS component model, rather, component models

need to be structured to be the simplest that is still sufficient

for the goal of “correct-by-construction” design in the given

context.

The CyPhyML Component Model (CCM) was designed to

integrate multi-domain, multi-abstraction and multi-language

structural, behavioral and manufacturing models and to

provide the composition interfaces for the OpenMETA model

composers consistently with the needs of power train and hull

design [15]. In Figure 5 we illustrate the overall structure of a

CCM for an engine. The main elements of the component

model are the port-based component interfaces, the related

embedded domain models and constraints representing cross-

domain interactions.

Based on the needs of system level integration in FANG,

we chose the following component model elements.

Parameter/Property Interfaces include a set of

parameters/properties ports 𝑃𝑝𝑝 characterizing the components

using established ontologies. Properties represent component

attributes such as material, mass, or an attribute associated

with its maturity, e.g. TRL. Parameters are variables that can

be changed as part of the design process. Properties can be

fixed, or could admit an uncertainty bound with a distribution.

For parameterized components (see parameters below),

properties can be variable and algorithmically associated with

parameters. Properties can also be scalar or vector, and have a

unit associated with them. CyPhy employs a standard unit

system based on NASA’s QUDT unit ontology. Figure 5

shows examples for the properties characterizing a Diesel

Engine. Parameters are mechanism to capture component

variability, allowing customization for a specific instantiation

or use. For example, a variable-length drive-shaft component

can be represented with a length parameter that can be

configured for a specific use. The parameters are largely

similar to properties from a specification standpoint and

inherit from a common base class, are associated with a unit,

and have a specified default value as well as a validity range.

Design space exploration tools use component parameters for

tuning or optimization of a design, or adaptation of a

component for a specific use [13][31].

Signal Interfaces are defined by the 𝑃𝑖𝑛 set of continuous-

time input signal ports, and the 𝑃𝑜𝑢𝑡 set of continuous-time

output signal ports. Interactions via signal interfaces are causal

and defined by models of computations [32][33]. Models of

dynamics implemented by embedded controllers are

represented using causal modeling approaches using modeling

languages such as Simulink/Stateflow [34], ESMoL [35],

Functional Mock-up Units [36] or the Modelica Synchronous

Library [37].

Power Interfaces represent physical interactions using

power flows. With the emphasis on power flows and the

ensuing distinction between physical variables, we follow the

port-Hamiltonian approach to physical system modeling. From

modeling point of view, the approach models the systems as

energy storing and dissipating components, that are connected

via ports to power conserving transmissions and conversions.

Accordingly, the power interfaces are represented using

acausal modeling framework [38][39][40] to achieve

compositionality in modeling physical dynamics. CyPhyML

incorporates the following port types: 𝑃𝑟𝑜𝑡𝑀𝑒𝑐ℎ is a set of

rotational mechanical power ports, 𝑃𝑡𝑟𝑎𝑛𝑠𝑀𝑒𝑐ℎ is a set of

translational mechanical power ports, 𝑃𝑚𝑢𝑙𝑡𝑖𝑏𝑜𝑑𝑦 is a set of

multi-body mechanical power ports, 𝑃ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 is a set of

hydraulic power ports, 𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙 is a set of thermal power

ports, and 𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 is a set of electrical power ports. Each

power ports is associated with two physical variables (effort

and flow), whose product yields power. In this approach,

dynamics models are represented as continuous time

Figure. 5: Illustration of the Structure of the CyPhyML Component Models

Caterpillar C9 Diesel Engine : AVM Component

High-Fidelity Modelica Dynamics Model

Rotational
Power Port

Signal Port

Low-Fidelity Modelica Dynamics Model

Rotational
Power Port

Signal Port

Bond Graph Dynamics Model

Rotational
Power Port

Signal Port

Detailed Geometry Model (CAD)

Structural
Interface

Structural
Interface

FEA-Ready CAD Model

Structural
Interface

Structural
Interface

Throttle
Signal
Port

map

Power Out
Rotational
Power Port

map

Mount
Structural
Interface

map

Bell Housing
Structural
Interface

map

Weight
680 kg

Length
1245 mm

Number of Cylinders
6

Maximum Power
330 kW

Height
1070 mm

Width
894.08 mm

Maximum RPM
2300 rpm

Minimum RPM
600 rpm

FEA Geometry

Signal Interfaces
• causal/directional
• logical conn.
• no power transfer

Power Interfaces
• acausal
• physical phen.
(torque/angle..)

• power flow

Structural
Interfaces
• named datums
• surface/axis/point
• mapped to CAD

Param./Property
Interfaces
• characterize
• configure

Dynamics

Detailed Geometry

Diesel Engine: AVM Component

0250-SIP-2017-PIEEE

10

Differential Algebraic Equations (DAE) or hybrid DAEs.

Since model libraries may come from different sources,

component models are potentially expressed in different

modeling languages such as Modelica [37] or Bond Graphs

Error! Reference source not found.(although we dominantly

used Modelica-based representations). The use of multi-

fidelity models is important in assuring scalability in virtual

prototyping of systems with large number of complex

components.

Structural Interfaces provide interaction points to the

geometric structure of components usually expressed as CAD

models of different fidelity. Geometry is a fundamental aspect

of CPS design. The structural interface incorporates geometric

ports 𝑃𝑔𝑒𝑜𝑚 , where component geometries can be connected

and provide the geometric constraints from which the

composed geometry of an assembly is calculated. They are the

basis for deriving geometric features of larger assemblies and

performing detailed Finite Element Analysis for a range of

physical behaviors (thermal, fluid, hydraulics, vibration,

electromagnetic and others [15].)

Domain Models capture model artifacts specific to

supported domain tools. The Domain models in CyPhyML are

a wrapping construct that refers to the domain model in its

native representation language and tool. The Domain model

exposes the core interface concepts that are used to map into

the Component Interfaces. For example, the component power

interface map directly into Modelica power ports. The

supported set of domain models are a point of expansion for

the language. In many OpenMETA transition projects, several

new Domain Models have been added. For the FANG-1

competition, supported domain models included (a) Modelica

models, Bond Graph models, Simulink/Stateflow models,

STEP compliant CAD models, and restricted Manufacturing

models representing cost, lead time and process information.

CCM allows multiple domain models for each domain thereby

enabling a multi-fidelity representation of the component. In

case there are multiple domain models, they are tagged with

fidelity tags. The fidelity tags are kept freeform to allow users,

component modelers, and tool developer’s flexibility in

specification and usage, since there is currently no universally

accepted taxonomy of model fidelity.

Formulas are modeling constructs for specifying

parametric interdependences across domain models. They are

used in conjunction with ValueFlow that establishes the

dependency relation while formulas define the mathematical

transformation between parameters. They are used extensively

as a method for cross-domain modeling.

The construction of CCM component models from a library

of domain models, (such as from Modelica models

representing lumped parameter dynamics of physical or

computational behaviors, CAD models, models of properties

and parameters and cross-domain interactions and the

mapping of domain modeling elements to component

interfaces), are time-consuming and error prone. The most

important challenge is that the CyPhyML Component Model

defines interface semantics (e.g. acausal power interfaces) that

represent restrictions over the modeling languages used in the

behavior and structural models embedded in components.

These restrictions need to be enforced otherwise a semantic

mismatch is created between the CyPhyML Component

Model and the embedded domain models.

To solve this problem, OpenMETA includes a full tool suite

for importing domain models (such as Modelica dynamic

models), integrating them with standard CyPhyML

Component Model interfaces, automatically checking

compliance with the standard, and automatically checking

model properties, such as restrictions on the types of domain

models, well-formedness rules, executability, and others.

Based on our direct experience, the automated model curation

process resulted in orders-of-magnitude reduction in required

user effort for building Component Model libraries.

In summary, CPS component models are containers of a

selected set of domain models capturing those aspects of

component structure and behavior that are essential for the

design process. While the selected modeling domains are

dependent on CPS system categories and design goals, the

overall integration platform can still be generic and

customizable to a wide range of CPS.

C. Design and Design Space Modeling

The 𝑆 = 〈𝐶𝑆𝐼 , 𝐺𝑆〉 generic design model is refined in

CyPhyML into the tuple

𝑆 = 〈𝐶𝑆𝐼 , 𝐴, 𝐹, 𝑃, 𝑐𝑜𝑛𝑡𝑎𝑖𝑛, 𝑝𝑜𝑟𝑡𝑂𝑓, 𝐸𝑃 , 𝐸𝑆, 𝐸𝐺 , 𝐸𝑉〉

with the following interpretation:

- 𝐶𝑆𝐼 is a set of component instances

- 𝐴 is a set of component assemblies,

- 𝐹 is a set of formulas

- 𝐵𝑒 = 𝐶𝑆𝐼 ∪ 𝐴 ∪ 𝐹 is the set of design elements,

- 𝑃 is the union of ports included in the component

interfaces,

- 𝑐𝑜𝑛𝑡𝑎𝑖𝑛: 𝐵𝑒 → 𝐴∗ is a containment function, whose range

is 𝐴∗ = 𝐴 ∪ {𝑟𝑜𝑜𝑡}, the set of design elements extended

with a special root element root,

- 𝑝𝑜𝑟𝑡𝑂𝑓: 𝑃 → 𝐵𝑒 is a port containment function, which

uniquely determines the container of any port,

- 𝐸𝑃 ⊆ 𝑃𝑃 × 𝑃𝑃 is the set of power flow connections

between power ports,

- 𝐸𝑆 ⊆ 𝑃𝑆 × 𝑃𝑆 is the set of information flow connections

between signal ports.

- 𝐸𝐺 ⊆ 𝑃𝐺 × 𝑃𝐺 is the set of geometric structure

connections between structure ports.

- 𝐸𝑉 ⊆ 𝑃𝑃𝑃 × 𝑃𝑃𝑃 is the set of value flow connections

between parameter and property ports.

 The restrictions over composing models by allowing the

formation of only four type of flows 𝐸𝑃 , 𝐸𝑆, 𝐸𝐺 , 𝐸𝑉 represent

the composition constraints Φ defined earlier. Even with these

constraints, if we adopted the design space as the

 𝐷 ≝ {𝑆|𝐺𝑆 ⊨ Φ, 𝑐𝑜𝑚𝑝𝑡𝑦𝑝𝑒𝑠(𝑆) ⊆ 𝐶}
set of all possible combination of components via well-formed

flows, we would get design space that incorporates almost

exclusively useless design points. To restrict the design space,

we used a common heuristics that starts all new designs from

modifying an old one. Accordingly, we provided for designers

seed designs 𝑆𝑠, that are functional, fully instantiated and

tested architectures together with a set of operations that they

could use to expand the 𝑆𝑠 design points into a design space

0250-SIP-2017-PIEEE

11

by introducing structural alternatives (alternative, compatible

components and assemblies) and parametric ranges. While this

approach rapidly converges to new designs, it certainly biases

initial thinking in some direction. We believe that design

space construction is a hugely important area of design

automation that deserves significant attention in the future.

From the point of view of the design of the CyPhyML

model integration language, the central issue is how the

selected component modeling and design modeling concept

impacts the semantics of the integration language. It is

important to note that we do not intend here to extend the

considerations to the details of modeling languages used for

CPS, we leave this to the many excellent articles [1]-[4]

[12][33][41].

The relationship between the semantics of the domain

modeling languages and the model integration language is

illustrated in Fig. 6. As the figure shows, the model integration

language provides a precisely controlled level of decoupling

between the frequently vastly complicated domain modeling

languages (such as Modelica for lumped parameter dynamics

or STEP/IGES for CAD) using semantic interfaces. The

primary goal for their design is simplicity: select semantics

that is sufficient for the integration of design models and

engineering process models. To preserve flexibility without

losing precision, the semantics of the model integration

language and that of the semantic interfaces need to be

explicitly defined. These semantic specifications are collected

in the Semantic Backplane in OpenMETA. There are two

kinds of semantic specifications required:

1. Structural semantics (or static semantics) [24] that

specifies constraints that all model instances of the

language need to satisfy. In the case of CyPhyML, this is

particularly important, since the composition rules for

creating models from components have many type

restrictions for obtaining valid power flows and geometric

structure. A more detailed description is available in [42].

2. Behavioral semantics for the composition operators that

connect interface ports. Several examples for the

specification of denotational semantics for composing

power flows as constraints over effort and flow variable

pairs (Kirchoff laws) are presented in [43][44].

D. Formal Framework for Semantic Integration: FORMULA

The “cost” of introducing a dynamic model integration

language is that mathematically precise formal semantics for

model integration had to be developed. Because no single tool

uniformly represents all aspects of a CPS system, a holistic

CPS engineering process must include a method to define,

compose, store, and evolve models in a tool-independent

fashion. The only truly unambiguous and tool-independent

method is a mathematical one, which defines: (1) a standard

representation for models that is suitable for many domains,

(2) a formalism for separating valid models from invalid ones

with an acceptable degree of precision, and (3) a class of

functions for transforming one model into another. These

definitions provide a semantic backplane supporting CPS

model composition and evolution throughout the engineering

lifecycle.

Armed with this semantic backplane, tools may be

implemented that automate its application. For example, a tool

might be implemented that efficiently checks if a CPS model

is valid (e.g. does not violate certain cross-domain electro-

mechanical constraints) according to unambiguously-stated

formal validation rules. One implementation may be more (or

less) efficient for specific operations, such as the

transformation of large existing models or the synthesis of

new models from scratch. Most importantly though, models,

model validation, and model transformations remain as formal

concise tool-independent objects.

For the remainder of this section we describe our

experiences developing a semantic backplane for CPS, which

led to the implementation of the FORMULA 2.0 system.

Before discussing specific design decisions, it is important to

emphasize a “no silver bullet” principle for semantics

backplanes: A semantic backplane cannot capture the formal

semantics of all modeling domains with perfect fidelity while

simultaneously having practical implementations. For

example, consider a semantic backplane that could validate

vehicle models for complex errors in their physical dynamics.

Any implementation of such a backplane most likely

subsumes the functionality of Matlab or Modelica, which

already have hugely complex implementations. Also, consider

that a vehicle likely has embedded software written in a C-like

language. A semantic backplane that could detect hard-to-find

bugs in this code via a perfect understanding of C semantics

most likely subsumes a C compiler, which again is another

complex implementation. There is no silver bullet and no

utopian formalism that has perfect formal semantics while

being practically implementable. Instead, a pragmatic

approach needs to be taken. The backplane focuses on

distinguishing models that are likely to be valid with an

emphasis on cross-domain validation rules. It also supports

model transformations that can create detailed projections of

complete system models, and these can be further analyzed by

domain-specific tools (e.g. ODE solvers, finite-element

analysis tools, or software verification tools) without

reinventing the entire wheel.

A semantic backplane must provide a convenient formalism

for representing, validating, and transforming models. Each of

these goals implies a non-trivial set of design decisions that

balance convenience, expressiveness, and efficiency. In fact,

Figure. 6: Semantic interface between the integrated

languages and the model integration language

Model Integration
LanguageDomain Modeling

Language (signal)

Domain Modeling
Language (prop/par)

Domain Modeling
Language (physical)

Domain Modeling
Language (geom.

Semantic Interface

Semantics of the
integration language

Semantic Interface

Semantic Interface Semantic Interface

0250-SIP-2017-PIEEE

12

many of the design decisions are related to ongoing debates in

many fields of computer science,

 Model representation: CPS models take the form of

graph-like structures (e.g. Matlab / Simulink), code-like

structures (e.g. systems ODEs & C code), and relational

structures (e.g. maps of model parameters to parameter

values). Should these all be reduced to relations over

atomic data types (e.g. Alloy, logic programs without

function symbols, relational databases)? Should they all

be expressed as trees of data (e.g. JSON, XML, Coq)?

Should they be some mixture of the two (NoSQL,

document databases, graph databases)? Decisions at this

level impose classic burdens on the comprehensibility of

models.

 Model validation: How should users express rules which

separate (likely) valid from invalid models? Classic

examples are first order logic, graph constraints, (finite-)

automata, and functional and procedural programs. Again,

tradeoffs of expressiveness, comprehensibility, and

efficiency occur here.

 Model transformation: How should functions be

formalized that transform one model to another? Classic

examples are string and tree transducers, term rewrite

systems, functional and procedural languages, and text

templates. Should this be a distinct formalism from model

validation?

The approach we have taken represents models as sets of

tree-like data (similar to modern NoSQL databases) allowing a

uniform encoding of tree-like, graph-like, and relational

structures. We have unified model validation and

transformation using open-world logic programming (OLP),

which allows both validation and transformation operations to

be formalized as an extension of first-order logic with fix-

point operations. Axioms written in this logic can be dually

understood as executable programs, providing engineers with

an additional mental-model for comprehending their

specifications.

Our specifications are highly declarative and easily express

complex domain constraints, rich synthesis problems, and

complex transformations. Automated reasoning is enabled by

efficient symbolic execution of logic programs into quantifier-

free sub-problems, which are dispatched to the state-of-the-art

SMT solver Z3 [45]. FORMULA 2.0 has been applied within

Microsoft to develop modeling languages for verifiable device

drivers and protocols [46]. It has been used by the automotive

embedded systems industries for engineering domain-specific

languages [47] and design-space exploration [31] under hard

resource allocation constraints. It is has been used to develop

semantic specifications for complex cyber-physical systems.

FORMULA 2.0 is released under an open-source license

and can be found at https://github.com/Microsoft/formula.

Domains. The structure of models and validation rules for

models are specified using algebraic data types (ADTs) and

OLPs, as shown in the example below.

1: domain Deployments
2: {
3: Service ::= new (name: String).
4: Node ::= new (id: Natural).
5: Conflict ::= new (s1: Service, s2: Service).
6: Deploy ::= fun (s: Service => n: Node).
7:
8: conforms no { n | Deploy(s, n), Deploy(s', n),
9: Conflict(s, s') }.
10:}

The Deployments domain formalizes the following

cross-domain problem: There are services, which can be in

conflict, and nodes, which can run services. Services must be

deployed to nodes such that no node executes conflicting

services. Lines 3 – 6 introduce data types to represent the

entities of the abstraction. The conformance rule (lines 8-9)

forbids conflicting tasks to run on the same node. This is an

example of an OLP rule, which can be interpreted either as a

logical axiom on valid models, or as a program that searches

over a model checking for violations of this rule. Constructing

a valid model for a fixed set of tasks, conflicts, and nodes is

NP-complete. It is equivalent to coloring the conflict graph

with nodes, demonstrating that model construction can be

difficult for humans and machines.

Domain Composition. FORMULA 2.0 provides

composition of domains so abstractions can be composed. For

example, Deployments can be constructed by gluing

together two independent domains, and then adding additional

validation rules and data types. Here is an example of a

refactoring Deployments into three separate domains.
1: domain Deployments extends Services, Nodes
2: {
3: Conflict ::= new (s1: Service, s2: Service).
4: Deploy ::= fun (s: Service => n: Node).
5:
6: conforms no { n | Deploy(s, n), Deploy(s', n),
7: Conflict(s, s') }.
8:}

The domains Services and Nodes contain the data

types and validation rules for a valid set of services and nodes.

This composition semantically merges data types (or produces

an error) and conjoins inherited constraints with new

constraints. In this way, large complex domains can be built

up from smaller pieces. The FORMULA 2.0 system provides

a formal meaning for this composition and its implementation

checks for many logical inconsistencies automatically,

including semantically conflicting definitions of data types,

un-satisfiable rules, and rules that produce badly-typed

inferences.

Models. Models are represented simply as sets of well-

typed trees created from domain data types. Model modules

hold the set of trees. Note that by allowing for a set of trees, it

is possible to naturally represent the full spectrum of models

from purely relational, to graph like, to fully tree-like, and

FORMULA 2.0 rules interact easily with this spectrum of

representations.

Formally, a domain D is an OLP. A model M closes D with

a set of facts, written D[M]. A fact is just a simple rule stating

that a data element is provable, and so a model is

simultaneously a set of facts. The properties of a model M are

those properties provable by the closed logic program D[M].

https://github.com/Microsoft/formula

0250-SIP-2017-PIEEE

13

In the example below, a model of an automotive system

contains two services, one for voice recognition and one for

handling the car’s dashboard user interface. Due to

computational constraints, these two services cannot be placed

on the same compute node.
1: model Undeployed of Deployments
2: {
3: sVoice is Service("In-car voice recognition").
4: sDB is Service("Dashboard UI").
5: n0 is Node(0).
6: n1 is Node(1).
7: Conflict(sVoice, sDB).
8: }
9: model Good of Deployments extends Undeployed
10: {
11: Deploy(sVoice, n0).
12: Deploy(sDB, n1).
13: }
14: model Bad of Deployments extends Undeployed
15: {
16: Deploy(sVoice, n0).
17: Deploy(sDB, n0).
18: }

Model composition is like domain composition, and allows

sets of trees to be combined. Each of these related models

differs in the properties that can be derived from their contents

(i.e. closed logic program).

 Deployments [Undeployed] does not satisfy

conforms, because services are not deployed to nodes.

(Violates validation Rule in Line 6 of Deployments

domain, which requires an instance of the Deploy data

type for every instance of Service data type.)

 Deployments [Good] satisfies conforms, because all

services are deployed and all conflicts are respected.

 Deployments [Bad] does not satisfy conforms, because its

deployments violate conflicts

Partial Models. Partial models partially close domains. A

partial model P is solved by a model M if all facts contained

within P and all requires clauses of P are provable in D[M]. In

this way, partial models describe many problem instances, and

solving a model is equivalent to synthesis. The partial model

below describes a specific deployment problem, and there are

infinite set of models that solve it.
1: partial model SpecificProblem of Deployments
2: {
3: requires Deployments.conforms.
4:
5: sVoice is Service("In-car voice recognition ").
6: sDB is Service("Dashboard UI").
7: n0 is Node(0).
8: n1 is Node(1).
9: Conflict(sVoice, sDB).
10: }

 The assertions in lines 3-9 must hold in a solution. Requires

clauses state more complex requirements on solutions, e.g.

line 3 requires models to conform to the Deployments domain.

The Good model is a manually constructed solution to this

partial model. However, with modern constraint solver, such

as Z3, it is sometimes tractable to automatically synthesize

complete models. Tractability depends on the size of the

partial model, structure of constraints, and degrees of freedom

that need to be resolved. In the AVM program such synthesis

has been successfully applied to perform aspects of design-

space exploration.

Transformations. Transforms are OLPs that transform

models between domains. They are useful for formalizing

changes in abstractions (such as compilers) and for projecting

large integrated models into consistent submodels that can be

fed to domain-specific tools. Below is a simple example that

compiles Deployment models into configuration files.
1: transform Compile (in::Deployments)
2: returns (out::NodeConfigs)
3: {
4: out.Config(n.id, list) :-
5: n is in.Node,
6: list = toList(out.#Services, NIL,
7: { s.name | in.Deploy(s, n) }).
8: }
9: domain NodeConfigs
10: {
11: Config ::=
12: fun (loc: Natural ->
13: list: any Services + { NIL }).
14: Services ::=
15: new (name: String,
16: tail: any Services + { NIL }).
17: }

Models of the NodeConfigs domain contain node

configuration files (lines 11-16). Each file lists the services

that run on a node. These are modeled using recursive ADTs

(i.e. utilizing the full power of tree-like representations). The

Compile transform takes a Deployments model called in

and produces a NodeConfigs model called out. This is

accomplished by the rule in lines 4-7. This rule converts every

node into a configuration file containing a list of services. It

employs the built-in toList function which joins a set of

small trees into on large tree (in this case in the form of a list).

Notice that models, domains, and transforms all use the same

data types and logical rules the describe their behavior. They

can all be composed. In fact, the Compile transform has a

copy of Deployment and NodeConfigs domains within

it, and its rule can refer to data types and have access to

derivations performed by rules in these domains.

E. OpenMETA Semantic Backplane

The second component of the Semantic Integration Layer, is

the OpenMETA Semantic Backplane. Its primary role is the

Figure 7: Dimensions of Semantics

Epistemic Semantics
(ontologies: shared conceptualization)

DSML Semantics
(structural)

(behavioral – denotational)
(behavioral – operational)

System Models

Ontologies
Units

Architecture
Requirements

Testing
…

Aerodynamics
NASTRAN FEA

Load

0250-SIP-2017-PIEEE

14

collection of all model and tool integration related semantic

specifications as formal models of all key aspects of the

domain-specific integration solution.

As shown in Fig. 7, there are two semantic dimensions that

need to be considered in a domain:

1. Epistemic Semantics that capture shared

conceptualization using ontologies. These ontologies

incorporate standards such as QUDT
3
 ontology for units

of measure, quantity kind, dimensions and data types

originally developed for the NASA Exploration Initiatives

Ontology Models (NExIOM) project, and many domain,

even company-specific ontologies defined for improving

interoperability of engineering processes.

2. Formal metamodels (models of modeling languages [17])

of Domain Specific Modeling Languages (DSMLs)

defined for representing integration models such as the

Model Integration Language (in the example CyPhyML)

and its sublanguages, Semantic Interfaces to domain

models, and modeling languages specifying design flows

in testbenches. Formal metamodeling in FORMULA-2

also enables the specification of model transformations in

Model Composers extensively used in the Tool

Integration Platform (see IV.A).

These two dimensions of semantics intersect such that

(ideally) the various DSMLs created for supporting model

integration utilize accepted ontologies – standards or locally

defined. The OpenMETA project followed this principle as

much as it was practical given the project time frame.

The Semantic Backplane is a collection of all formal

metamodels and specification of model transformations

accessible via a web interface to inspect, update and execute

them on the FORMULA-2 tool. The Semantic Backplane was

close to 20,000 lines of FORMULA-2 code, of which about

60% was autogenerated from MetaGME – based graphical

metamodels [16]. Examples and more details of the formal

metamodels for OpenMETA are available in several papers

[14][42]-[44] .

We believe that the introduction of Semantic Backplane is a

new approach to constructing complex component- and

model-based design tool chains. It is an essential tool for those

who design and evolve domain specific tool chains and

responsible for the overall integrity of the model and tool

configurations used in the design process. Its importance was

proven in the following use cases:

1. As in all areas of engineering, mathematical modeling

helped designing and evolving modeling languages,

composition semantics and model transformations. It was

invaluable in finding and correcting inconsistencies,

identifying incompleteness problems, and fixing errors in

the semantic foundations of the tool chain.

2. The FORMULA-2 based executable specifications of

model transformations were used for generating reference

traces and served as abstract prototypes for constraint

checkers and production-level transformations used

throughout the tool chain.

3. The CyPhyML Reference Manual was auto-generated

from the formal specifications.

3 http://www.qudt.org/

In summary, the tool agnostic Model Integration Layer that

incorporates a Model Integration Language (CyPhyML) (with

sublanguages for representing component models, designs,

design spaces, cross-domain interactions, composition

constraints, data model interfaces for tools, models of

engineering processes and model transformations for

composing analysis models) is complemented by the Semantic

Integration Layer including the FORMULA-2 based Semantic

Backplane. Since the Model Integration Language is designed

for evolution, defining formal, mathematical semantics of its

components is essential for keeping tight control over the

semantic integrity of the design process.

IV. TOOL INTEGRATION PLATFORM

The OpenMETA Tool Integration Platform (see Fig. 4)

comprises a network of Composers implemented as model

transformations that compose models for individual tools (e.g.

Modelica models from CyPhyML design models and

component models) invoked by testbenches and deploy

model-based design flows on standard execution platforms

such as MDAO or HLA. Model-transformations are used in

the following roles:

1. Packaging. Models are translated into a different

syntactic form without changing their semantics. For

example, AVM Component Models and AVM Design

Models are translated into standard Design Data

Packages for consumption by a variety of design

analysis, manufacturability analysis and repository tools.

2. Composition. Model- and component-based technologies

are based on composing different design artifacts (such as

DAE-s for representing lumped parameter dynamics as

Modelica equations [37], input models for verification

tools [48]-[54], CAD models of component assemblies

[15], design space models [55][61], and many others)

from appropriate models of components and component

architectures.

3. Virtual prototyping. Several test and verification methods

(such as Probabilistic Certificate of Correctness – PCC)

require testbenches that embed a virtual prototype of the

designed system executing a mission scenario in some

environment (as defined in the requirement documents).

We found distributed, multi-model simulation platforms

the most scalable solution for these tests. We selected the

High Level Architecture (HLA) as the distributed

simulation platform and integrated FMI Co-Simulation

components with HLA [19].

4. Analysis flow. Parametric explorations of designs (PET),

such as analyzing effects of structural parameters (e.g.

length of vehicle) on vehicle performance, or deriving

PCC for performance properties frequently require

complex analysis flows that include a number of

intermediate stages. Automating design space

explorations require that Python files controlling the

execution of these flows on the Multidisciplinary Design

Analysis and Optimization (OpenMDAO) platform (that

we currently use in OpenMETA) are autogenerated from

the testbench and parametric exploration models (Fig. 4).

0250-SIP-2017-PIEEE

15

A. Model Composers

The Model Composers are the bridge between the Model,

Tool, and Execution Integration Platforms by (1) composing

testbench (and incorporated tool) specific analysis models

from designs models 𝑆𝐷 = 〈𝐶𝑆𝐼 , 𝐺𝑆〉, 𝑆𝐷 ∈ 𝐷 that are included

in the D design space using the information in the component

models, 𝐶(𝑥, 𝑝), (2) integrate those with the testbench models

to obtain executable specification and (3) map the fully

configured testbench models on the Execution Integration

Platform [55].

Model Composers work on a specific view of models and

implement a logic that relies on the structural semantics of a

domain or domains associated with the specific view. The

Model Composers extract relevant portions of the model from

a selected view. Once the specific view is selected a model

transformation is performed to another model representation,

while the semantic specifications are preserved. The

transformed models are executable or analyzable by

simulation, static analysis, or verification tools.

There are several approaches to implement Model

Composers:

1. Using manually implemented and maintained source

code in a programming language.

2. Using a combination of manual implementation of

source code in conjunction of automatically

generated Application Programming Interfaces

(APIs) for the structural semantics of each model

representation.

3. Using model-based rewrite rules, where no or

minimal logic is captured by manually implemented

source code [16].

4. Using a formal specification of the Model Composer

(e.g., FORMULA).

All implementation approaches starting from 2 have

progressively stronger linkage and relationship to the semantic

backplane. This provides significant benefit on verification of

ensuring semantic consistency across the multiple

representations and guarantee that all concepts are kept

consistent. However, our experience shows that as we move

towards more formal specification of Model Composers, the

runtime of Model Composers gets larger. Model Composers

observe scalability issues, when dealing with large scale

complex CPS models along with rich domain specific

languages containing thousands of concepts.

These Model Composers also work on design spaces and on

the instantiated testbenches from the testbench template

library. This capability provides a high degree of automation,

when a design space is elaborated to hundreds or thousands of

configurations the Model Composers extract the configuration

and view specific content and perform the model

transformation to simulation, analysis, or verification tools.

B. Example Model Composer for PCC Testbench

As an example for a Model Composer we discuss the

Probabilistic Certificate of Correctness (PCC) testbench and

its PCC Model Composer, which generates a PCC experiment

setup for the Execution Integration Platform. Each testbench is

applicable for design spaces, thus the PCC experiment is

applicable over a set of configurations generated by the design

space exploration tool. The purpose of these experiments is to

find the most robust design w.r.t. changes and uncertainties in

the input parameters to the workflow. A distribution function

is fitted on each output. Each output has three parameters

defined: a minimum value, a maximum value, and a target

percentage. The area under the output distribution function

within the defined minimum and maximum values gives the

PCC value, a number between 0% and 100%. If this PCC

value is higher than the defined target PCC value in the model,

it means that the output parameter falls within our required

limit. Often this target PCC value is directly linked to a system

or subsystem requirement. For each design a joint PCC value

is derived from all outputs.

PCC testbench model contains a definition of a workflow of

analysis tools and a PCC driver module model as depicted in

Fig. 8. The workflow model elements refer to other

testbenches, which are using the Execution Integration

Platform to generate analysis results. A dependency between

the different testbenches, most likely spanning vastly different

domains, are contained in the PCC testbench model. The PCC

driver model defines a set of input parameters for the

workflow and their probability distribution functions (PDF)

and a set of instrumentation points, which variables are

recorded throughout the multiple execution steps. In addition,

the PCC driver model defines a sampling method for the input

parametric space, which determines the number of iteration for

this experiment.

A PCC Model Composer was implemented to map the PCC

testbenches to the Execution Integration Platform. Fig. 9

depicts the logic of the PCC Model Composer. Each Model

Composer is reusable, functionally complete and composable.

For example, the Model Composer 1 is reused as-is for

generating executable models for Analysis Tool 1. We utilize

the capabilities of OpenMDAO Error! Reference source not

found. to perform the execution. The PCC Model Composer

invokes all required Model Composers and generates

Figure 9: An example for Model Composer (PCC)

uses

Model
Composer 2

Model
Composer 1

PCC driver

Testbench 1

Testbench 2

PCC Model
Composer

Executable model with
Analysis Tool 1

Executable model with
Analysis Tool 2

Integrated
experiment

setup in
OpenMDAO

PCC driver as an
OpenMDAO driver

PCC Model Composer

PCC Model Composer

uses

Figure 8: PCC testbench model

PCC driver

Testbench 1
Model Composer 1

Analysis Tool 1

Testbench 2
Model Composer 2

Analysis Tool 2

PDF inputs Record distributions
outputs

pass parameters

0250-SIP-2017-PIEEE

16

additional OpenMDAO component wrappers for each

testbench type around the executable models. In addition to

the OpenMDAO components, the PCC driver model is

transformed to an OpenMDAO driver. The driver module is a

parametric OpenMDAO driver developed by Oregon State

University [53]. Finally, the integrated experiment is setup by

instantiating all components including the driver and the

workflow specification according to the PCC testbench model.

In order to effectively manage the large demand of

simulations and analyses a job manager and dispatch server

was created in the Execution Integration Platform. The

detailed description of the job manager is outside of the scope

of this paper.

 As the example illustrates, significant part of the overall

integration complexity, and complex transformation logic, is

concentrated in the Model Composers. This underlines the

significance of explicit modeling the semantics of Model

Composers using tools of the Semantic Backplane.

C. Static Design-Space Exploration Testbench

Arguably, the ability to construct, shape and explore design

spaces is critical to design of CPS, which has to fulfill a large

number of - often conflicting – performance objectives, as

well as satisfy a variety of implicit and explicit constraints.

The design space representation in CyPhyML, described

earlier, using hierarchically layered assembly and component

alternatives and parameterization is quite powerful in its

ability to compactly represent extremely large design spaces.

However, the size and dimensionality of the design space

poses a significant challenge, rendering it infeasible to

exhaustively enumerate and evaluate all candidate designs

encapsulated in the design space representation.

OpenMETA design flow, as we articulated earlier, employs

a progressive deepening strategy i.e. evaluate the candidate

designs using lower fidelity models and progress toward

increasingly complex, higher fidelity models and focus on

rapidly decreasing the number of candidate designs. However,

even with this pragmatic strategy a major challenge was that

the initial combinatorial design space (sometimes with billions

of candidate designs) is simply infeasible even to enumerate

let alone evaluate irrespective of the model fidelity. Therefore,

we had to employ powerful analytic techniques that could

manipulate entire design spaces without exhaustively

enumerating them. Inspired by success in model checking,

([56]), our prior work on design space exploration in

hardware-software co-design [57][58], resulted in

development of DESERT [59][60][61] – a tool for constraint-

guided pruning of design spaces using symbolic methods.

The static design space exploration testbench utilizes and

integrates DESERT into the OpenMETA design flow. The

static design space exploration Testbench is uniquely distinct

(compared to other testbenches in OpenMETA), in that it

transforms entire design space (rather than design

configurations) into a symbolic representation suitable for

DESERT, and then inverse transforms the (severely) trimmed

design space from DESERT.

We refer to this as “static design space exploration”, since

DESERT solves constraints over static (time-invariant)

properties of design elements (e.g. MaxTorque, or MaxRPM

of an Engine) and their analytic composition over design

structures. It is often tempting to trivialize the type of low-

fidelity analytics employed in static DSE and their role in

understanding complex CPS designs. However, we learned

that several common classes of design errors (“sizing

mismatch”, “part compatibility”, “manufacturability”) that

require expensive redesign and design iterations in industrial

design processes, can be eliminated by encoding as constraints

over static properties to navigate away from the erroneous

design configurations. For example, a “gradeability”

requirement (e.g. vehicle climbing a 20 degree hill can

accelerate at 2 m/s
2
) translates to an engine sizing problem and

can be represented as the following constraint:

Each of the four named properties referred to in the

constraint above are “variable” and are non-trivially dependent

upon the component selections. Satisfying this constraint in

static DSE enforces that all “pruned-in” designs are

conformant to the requirement, and will not result in “sizing

mismatch” type of design errors.

DESERT uses an AND-OR-LEAF tree structure to

represent design spaces in a generic manner, where AND

nodes represent hierarchically inclusive containers, OR nodes

represent exclusive or choice containers, while LEAF nodes

represent design primitives. DESERT also allows properties

associated with LEAF nodes that can have unique value or a

range of value assignment. DESERT supports a number of

different types of constraints, specified using an extended

Object Constraint Language (OCL) [62]. Functions supported

in constraints include all logical, trigonometric and logarithm

functions as well as sign, rint, sqrt, and abs. DESERT’s

internal operation and user interface is outside the scope of

this paper, however can be seen in [61].

The static design space exploration testbench maps

CyPhyML design spaces to DESERT’s AND-OR-LEAF

representation with the following mapping – Component

Assemblies are mapped to AND nodes, Alternative Containers

are mapped to OR nodes, and Components are mapped to

LEAF nodes. Constraints, as exemplified above, are

represented in CyPhyML using multiple graphical and textual

notations amenable to end-users. In the mapping process,

these constraints are translated into the extended OCL notation

supported by DESERT. In CyPhyML inter- and intra-

component property relations are represented with “value

flows”, while in translation to DESERT these “value flows”

are mapped into constraints.

DESERT accepts as input the design space representation as

an AND-OR-LEAF tree, a set of constraints, and generates an

enumeration of satisfying configurations. These configurations

represent a binding of choice elements (OR-nodes) to the

specific selection (either an AND-node or a LEAF-node). In

the inverse transformation these configurations are elaborated

back into hierarchical component assemblies in CyPhyML’s

native representation, where they become suitable for

subsequent evaluation by other testbenches.

Design space is a foundational construct in OpenMETA,

and our experience indicated the need to robustly support the

(Powerplant_maxTorque() * 1.3558) >=

((Tire_radius()/1000) * (Vehicle_weight() +

13000) * sin(0.35) + ((Vehicle_weight() +

13000)/9.8) * 2)

0250-SIP-2017-PIEEE

17

construct throughout the design process with additional tools.

For example, designers in OpenMETA after an iteration

through the design flow often wanted to understand the critical

component selections i.e. components that occur in most

viable design configurations. We also observed that the design

flow is not linear even in the sense that the design space is not

fully defined (depth wise or breadth wise) all at once in the

beginning, but rather follows an iterative path that can best be

articulated as alternately narrowing – by exploration and

pruning; deepening – by further elaborating and adding details

in subset of component hierarchies; and widening – by adding

additional component selections and parameterization in sub-

trees. These observations led us to improve support for design

space management by creating several helper tools – Design

Space Refiner, Design Space Refactorer, Design Space

Criticality Meter [61]. Finally, DESERT as a symbolic

constraint satisfaction tool represents a powerful capability

however is constrained by the underlying BDD and MT-BDD

backend and limited in terms of algebraic domains supported.

The recent development in SMT solvers, particularly with an

expansive support library of domain theories, offers a unique

opportunity to augment DESERT with an SMT solver based

backend

D. Verification Testbenches

Verification is a key enabler to the development of

advanced CPS by improving system assurance with

compressed qualification times [63]. Verification aims at

analyzing functional and behavioral correctness in the

presence of multiple sources of non-determinism and has a

crucial role in model-based design. The ultimate objective is

to facilitate the “correct-by-construction” design of systems by

reducing the need for expensive and unavoidably incomplete

experimental prototyping and testing. Verification methods

involve analysis and reasoning using models of the system in

each step of the design to ensure that it satisfies the

requirements. Such methods are gaining increased attention

because they allow the decomposition of the design process

into an iterative progression from requirement models to

implementation models using the repeated step of model

construction, verification, and transformation [2][3]. In this

process, verification techniques can focus on the semantics of

a suite of abstract system models that are incrementally

refined into implementation models.

Verification of CPS is a very hard problem due to

heterogeneous, highly nonlinear and nondeterministic

dynamics, scalability due to large number of components, and

complexity of formal framework needed to express and reason

about requirements. These challenges are addressed typically

by considering simplified abstractions and/or approximations

of system models. A fundamental gap is the lack of

understanding of the interrelations among different

abstractions as well as the lack of methods for the automated

composition of multi-abstraction and multi-fidelity models

that can be adapted to the property to be verified. A significant

objective in our work is the development of methods and tools

for automated generation of suitable abstractions from detailed

systems models that enable the use of formal verification. An

additional objective is the integration of verification methods

with simulation that is achieved through model integration and

the CyPhyML modeling integration language.

Formal verification methods are integrated in OpenMETA

using verification testbenches. The verification testbenches

include (1) system models in some mathematical domain (e.g.,

differential algebraic equations (DAEs) [29], qualitative

automata [49], and hybrid systems) [48]; (2) requirements

expressed as model properties in some logic framework [64];

(3) information about ranges of inputs, model parameters,

context, and initial conditions; and (4) algorithms proving that

the models satisfy the properties over the defined domains or

generating counterexamples demonstrating that the properties

are violated.

The main modeling formalism used in the lumped

parameter dynamics abstraction level in OpenMETA is hybrid

systems [50]. A significant challenge is the automated

translation from composed simulation models represented in

the Modelica language to mathematical models that can be

used for verification and formal analysis. In OpenMETA, this

problem of automated translation is decomposed to multiple

subproblems that are addressed by different tools:

1. The first step is the construction of a component model

library consisting only of declarative models that can be

represented with mathematical equations. We developed a

fully equation-based, symbolic version of the FANG

Modelica component libraries that the formal verification

tools are able to process.

2. The second step is the use of tools within the Modelica

compiler for generating the mathematical equations of

complex system models with interconnections of multiple

components. These models are used as inputs to model

translators that generate formal models suitable for

various verification techniques. Although the coverage of

automated translation is not complete, the models and

tools developed, demonstrate the feasibility of the

approach for a large and important class of system

dynamics.

The use of verification methods in the design flow starts

with the construction of a system model that is adapted to the

property that needs to be verified. In the context of

OpenMETA, examples of such properties express vehicle

requirements that can be associated with mobility operational

range, payload, braking, and other performance requirements.

In addition to performance, safety requirements comprise

another group of properties to be verified. For example, a

typical requirement for military vehicles is that the vehicle

shall meet all performance targets for all load conditions

without exceeding component manufacturers limits.

Such safety properties are associated with subsystems and

components and need to be derived during the system design.

Verification methods require encoding such properties in a

formal logic framework. In OpenMETA, linear temporal logic

(LTL) is used to express performance and safety properties.

LTL formulae use combinations of temporal and logic

operators to express complex properties that must be satisfied

by the system behavior [50]. Writing the informal system

requirements as formal temporal logic formulas is a

challenging task especially for non-experts. The project

developed a template-based tool that allows users to write

properties using an intuitive interface, which then are

0250-SIP-2017-PIEEE

18

translated to LTL formulas that are used by the verification

tools. Reliability requirements comprise another class of

system requirements that need to be addressed. When a system

is deployed, faults occur in the field due to environmental

conditions, poor maintenance, and attacks on equipment.

Therefore, it is crucial to reason about fault behavior and

failure impact as part of the early system correctness analysis

and verification efforts, and determine the survivability and

continued utility of equipment in the presence of faults

[51][52].

The tool chain includes three verification methods for

complementing simulation-based analysis: (1) qualitative

reasoning, (2) verification based on relational abstractions, and

(3) reliability analysis using fault-augmented models. These

methods provide different but synergistic capabilities,

demonstrate how verification methods can be integrated in the

design tool-chain, and how they can be used for reducing the

need for prototyping and testing.

Qualitative reasoning (QR) aims to automate verification of

continuous dynamics by generating qualitative descriptions of

physical systems and their behaviors [49]. QR can identify

feasible designs, suggest parameter changes that improve

design quality, and highlight potential problems due to poor

parameter choice relying on qualitative abstractions of the

system dynamics. In OpenMETA, Modelica hybrid system

models are abstracted into constraint networks that are used to

generate a multi-trajectory simulation, or envisionment, of all

possible qualitative behaviors of the abstraction. This

envisionment enables qualitative verification where

behavioral/safety requirements can be proved to be satisfied

for all, some, or no choice of the parameters in the underlying

Modelica model. Qualitative analysis can be performed early

in the design process before all parameters have been selected.

In the case the model may not meet the requirements for a

specific choice of design parameters, QR provides guidance

about how to modify the model parameters. We were able to

analyze models with more than a hundred equations and

integrate the analysis into the tool chain to evaluate various

system requirements. The main limitation is scaling up to

more complex models consisting of 1000s of equations that

are typical of complete vehicle systems models.

The tool suite uses the HybridSal Relational Abstraction as

a formal verification tool for verifying safety properties of

CPS [50]. The main objective is verifying control algorithms

while taking into account the behavior of the physical plant.

The controller is modeled using Matlab, Simulink and

Stateflow while the physical plant is modeled in Modelica

using components from the declarative component library.

Physical plants are represented using differential algebraic

equations (DAEs). The desired behavior of the controller is

encoded in LTL formulas focusing on safety properties.

Integration is based on (1) a slicer which aims at identifying a

small subset of the set of DAEs of the Modelica model that

correctly describe the dynamics of a given set of variables

which are selected as the input variables of the controller

models, (2) a model translator from Modelica to the HybridSal

verification tool, (3) a tool that takes as input a Matlab

controller model and outputs the same controller in

HybridSal’s input language, and (4) the HybridSal relational

abstraction based tool for verifying composed controller and

plant models. Examples of verification testbenches include:

1. A drivetrain model with transmission controller in order

to determine the range of grades of the road where gears

provably do not chatter for all driver throttle positions

and,

2. A model of an engine, which takes as input torque value

and outputs engine RPM, in order to determine the range

of inputs that guarantees that the engine RPM is bounded.

The main limitations are related to the coverage of the

slicer and model translator of the physical plant.

The goal of the reliability analysis testbenches is to evaluate

a vehicle design using various reliability metrics. The

testbenches use fault augmented component models that are

developed to simulate the effects of component faults and their

propagation to system-level behavior [51]. The starting point

of the reliability analysis is a design with fault-augmented

component models [52]. Components are associated with

applicable damage parameter maps that provide the

probability distributions of damage parameters (e.g., wear

fraction for friction wear in a clutch) with respect to usage as

well as other component-specific parameters (e.g., geometric

constant and maximum normal force for a clutch). The design

is then analyzed and the damage-parameter maps are

interpolated to generate time/usage dependent probabilistic

transitions from nominal to faulty state for the system

components. Subsequently, the design is run through a suite of

reliability testbenches. These testbenches evaluate the design

against several key reliability requirements as they effect

system-level performance after extended usage.

In order to complement formal verification, a suite of

methods for performing probabilistic analysis for a given

performance requirement are also developed and integrated.

While deterministic methods seek to offer a yes/no answer to

verification questions, probabilistic methods provide a

probabilistic certificate of correctness (PCC) using methods of

uncertainty quantification (UQ). The goal is to determine the

probability that the performance function is less than (or

greater than) the requirement. PCC methods extend simulation

methods by assuming that inputs, outputs, and model

parameters are uncertain but can be specified using probability

distributions. In general, they are more scalable than formal

verification methods but they require additional information in

order to quantify the uncertainty in the model. PCC

testbenches use Modelica system models extended to capture

uncertainty in the system inputs and parameters. As part of our

project, we implemented six UQ methods for PCC estimation:

Monte Carlo Simulation (MCS), Taylor Series Method (TSM),

Most Probable Point (MPP), Full Factorial Numerical

Integration (FFNI), Univariate Dimension Reduction (UDR),

and Polynomial Chaos Expansion (PCE) [53]. In addition, we

implemented sensitivity analysis methods to quantify the

amount of variance that each input factor contributes to the

PCC of the performance requirement (Sobol, FAST, EFAST

[54]).

In conclusion, we developed and integrated in the

OpenMETA toolchain two formal verification methods, one

reliability analysis method, and methods for uncertainty

quantification. The developed tools have been demonstrated

using various testbenches representing realistic vehicle

0250-SIP-2017-PIEEE

19

models. Although the model complexity, heterogeneity, and

scale create considerable challenges, verification methods

provide complementary capabilities for addressing

performance, safety, and reliability requirements at different

phases of the design flow. These capabilities facilitate

“correct-by-construction” design and can be used to

complement simulation methods.

V. LESSONS LEARNED

Creating end-to-end design automation tool chains for the

model- and component-based design of CPS is a significant

challenge that extends to the fundamentals of compositionality

in heterogeneous domains, formulating abstractions with

established relationships, modularization of models to create

reusable component model libraries, verification methods and

scaling to real-life systems. The OpenMETA project, that was

part of DARPA’s AVM program offered unique opportunity

for conducting a large-scale integration experiment with

extensive testing of the results using a design competition [8].

Below we summarize some of the most important lessons

learned.

A. Horizontal Integration Platforms

Approaching the design automation challenge by

establishing horizontal model, tool and execution integration

platforms was a necessity. The key insight for us was that the

tradeoffs among using standard-based, or tool/vendor-specific,

or locally defined ontologies and DSMLs as model integration

languages is an interesting problem of its own and the answer

depends on the context: characteristics of the CPS product

line, size of the company and complexity of the engineering

process. However, independently from the context, we did not

conclude that the ultimate solution would be the emergence of

a standard, universal model integration language (e.g.

SysML
4
, or other), simply, because these languages need to

respond rapidly to changes in the product line and in the

engineering processes, and the cost of evolving domain-

specific modeling languages is not a prohibiting factor due to

the appearance of metaprogrammable modeling and model

management tools such as WebGME
5
, EMF

6
 and others. We

found that the use of model and tool integration platforms can

provide an increased level of decoupling between the product

and engineering process specific view of the systems’

companies and the more generic view of tool vendors.

B. Availability of Reusable Component Model Libraries

 In model- and component-based design the key

productivity factors depend on the availability of reusable,

componentized model libraries on different domains and on

the feasibility of fully automated model composition during

design space exploration. Both of these factors were much

harder to obtain than we expected. There are excellent

examples for existing, highly successful model libraries, both

in crowdsourced or COTS form: DOE’s EnergyPlus
7
 is an

open-source model and simulation library for energy; the

4 http://www.omgsysml.org/
5 http://webgme.org
6 http://www.eclipse.org/modeling/emf/docs/
7http://apps1.eere.energy.gov/buildings/energyplus/energyplus_addons.cfm

Modelica Standard Library (MSL)
8
 is a crowdsourced, multi-

physics lumped parameter dynamics library developed and

maintained by the OpenModelica Consortium; Modelon’s

Vehicle Dynamics Library
9
 is a COTS component library on

the top of the Modelica Standard Library; and many others.

We believe that domain specific model libraries will continue

emerging both in open-source and COTS form and will

become one of the engines in the progress of component and

model-based design. We believe that our CCM component

models should accelerate progress in creation of multi-domain

component model libraries.

C. Automated Model Composition

This is frequently missing in physical domains due to the

perception that useful physical models need to be hand-crafted

for specific phenomena, and consequently, the modeling

abstractions used are often decoupled from the physical

architecture of the system. One explanation for this is the

frequent use of modeling approaches that do not support

generic compositionality. Our CCM component model places

strong emphasis on compositional semantics to resolve this

problem. However, we have identified several challenges,

ranging from technical to fundamental that had to be

addressed or still open according to our knowledge.

Target language challenge. While CyPhyML incorporates

an extensive set of checks on the well-formedness of the

composed architecture models (as defined in the structural

semantics of CyPhyML), when the Model Composers

generate the individual analysis models there are additional

considerations that are specific to the target language and do

not belong to the CyPhyML structural semantics. For

example, the composed Modelica models need to satisfy a

range of best practices and conventions that need to be

guaranteed by component authoring guidelines and curation

checks. These guidelines include rules such as using potential

rather than flow as boundary condition in physical models,

preference of using declarative constructs instead of

imperative, and many others. Even with these guidelines,

extensive testing and debugging of component models in

various system contexts were required to achieve acceptable

composability.

Component validity challenge. Models of physical

components have (ocassionally implicitly) an operating

regime where they are valid i.e. reproduce accurately the

behavior of the referent (component or subsystem). In lumped

parameter dynamic models this region of validity is usually

expressed as constraints over the state variables. The challenge

to composability is that, whether or not component models

remain valid during simulation runs depends on their

interaction with other components. It is possible that a

computed trajectory becomes invalid simply because one or

more components temporarily leave their region of validity, or

in other words, they lose their composability. We addressed

this problem by making the regions of validity explicit i.e. part

of the component models, and by actively monitoring validity

violations these during simulation runs.

8 http://www.modelica.org
9http://www.modelon.com/products/modelica-libraries/vehicle-dynamics-

library/

0250-SIP-2017-PIEEE

20

Complexity challenge. A particularly hard problem of

automated composition of system models from multi-

phenomenon component models is that it can easily produce

very complex, high-order models that the solvers cannot

handle. We experimented with supporting multiple

abstractions, and multiple fidelity levels in component

libraries, and with adapting the selected level of abstraction

and component fidelity level to the system property being

analyzed. While this approach has proved to be promising,

the cost of creating multiple fidelity models has remained an

open challenge. Deriving surrogate models combined with

machine learning [67][68] was a possible solution but

validation of surrogate models was still costly, and

composability of surrogate models is not well understood.

Time resolution challenge. Complex, multi physics models

frequently incorporate dynamics with highly different

frequency ranges. For example in drivetrains, the time

constant of mechanical processes is significantly smaller than

that of thermal processes. Composition of the system level

Modelica model for a drivetrain yields a large number of

equations for which the simulation with a single Modelica

simulator may be extremely slow because the step size of the

solver is determined by the fastest processes. We

experimented with phenomenon-based slicing of multi physics

models by first composing the system-level model using

component models, followed by the decomposition of the

model - but not along the component/subsystem boundaries,

rather along physical phenomena (mechanical processes and

thermal process) so that we can separate the fast and slow

dynamics. This decomposition led to two models that can be

co-simulated using the co-simulation testbench, so the re-

composition of the system-level simulation occurs in a

different semantic domain (distributed co-simulation). We

have demonstrated the feasibility and impact of the approach

in [66]. However, the construction of model libraries that can

be automatically sliced by physical phenomena is an open

problem.

D. Semantic Backplane

While our experience with constructing a formal semantic

model for key integration entities (model integration language,

ontologies, semantic interfaces, model composers) has proved

to be extremely valuable to keep the overall integration effort

consistent, the fact that the “production tools” in OpenMETA

(the metaprogrammable Generic Modeling Environment

(GME), its metamodels, and the code of the model composers)

were separate from the FORMULA-2 based formal

specifications created the risk of divergence between the

implemented integration components and their formal models.

To mitigate this risk, a tight coupling need to exist between

the metaprogrammable tools and FORMULA-2, which is an

active research effort.

E. Verification

In spite of significant progress, verification of complex CPS

remains a very hard problem and there are major challenges

that hinder the use of verification methods: (1) automated

translation of complex component-based models to suitable

abstractions, (2) mapping of significant correctness

requirements to typical safety/reachability properties, and (3)

integration of effective and usable verification methods into

the design flow. The fundamental problems for addressing

such challenges can be categorized along the following four

dimensions: (1) complexity due to highly nonlinear and

nondeterministic dynamics, (2) heterogeneity of components

and behaviors, (3) scalability due to large number of

components, and (4) epistemic uncertainty due to neglecting

certain effects in the models because of knowledge gaps.

Furthermore, these challenges are coupled in modern systems

and this coupling magnifies the problem. Another fundamental

gap is the lack of understanding of the interrelations among

different abstractions and the lack of methods for the

automated composition of multi-abstraction and multi-fidelity

models that are adapted to the property to be verified.

F. Code complexity

The dominant challenge in developing OpenMETA was

integration: models, tools and executions. The OpenMETA

integration platforms included over 1M lines of code that is

reusable in many CPS design contexts. In the AVM project,

OpenMETA integrated 29 open source and 8 commercial

tools, representing a code base estimated to be 2 orders of

magnitude larger than OpenMETA [6] itself. The conclusion

is that integration does matter. It is scientifically challenging

and yields major benefits. This is particularly true in design

automation for CPS, where integrated design flows are still

not a reality.

G. Evaluation and Transitioning

The OpenMETA tool suite evolved along parallel

evaluation efforts performed first in the FANG 1 design

competition focusing on the drivetrain and mobility aspects of

the vehicle and later on the hull design. A comprehensive

summary of the FANG 1 competition and related evaluation is

available in [8]. While FANG 1 was relatively early in the

project (after 2 years of effort), we believe that it has proved

early the feasibility and validity of the overall integration

architecture we discussed in this paper. The competition

experience also provided our team useful insights and

feedback regarding the maturity of the dominantly open

source simulation and verification component technologies,

and in a more general sense, advantages and limitations of the

model- and component-based design approach for CPS (the

most essential ones described above).

The OpenMETA transitioning process has started in 2014

through various transitioning programs
10

, partially by spinoff

companies pursuing a wide range of domains including the

integration of tool chain pilots for electronic design, robotics,

aerospace systems and automotive systems. Since OpenMETA

addressed integration technologies that were motivated by the

needs of CPS design, their applicability remains broad. Most

of the transitioning efforts utilize two open-source repositories

in Github: one for the OpenMETA-core
11

 and one for

OpenMETA-extensions
12

.

10https://www.pddnet.com/news/2014/02/darpa-begins-early-transition-

adaptive-vehicle-make-technologies
11 https://github.com/metamorph-inc/meta-core
12 https://github.com/metamorph-inc/openmeta-mms

https://github.com/metamorph-inc/openmeta-mms

0250-SIP-2017-PIEEE

21

VI. CONCLUSION AND FUTURE DIRECTIONS

The OpenMETA integration platforms addressed the

following problems of component- and model-based design

for CPS: (a) composing system-level models from reusable,

heterogeneous component model libraries, (b) extending the

limits of correct-by-construction design by supporting

heterogeneity and automation, (c) applying multiple level of

abstractions in design flows for CPS, (d) executing rapid

design trade-offs, (e) defining interface between design and

manufacturing for CPS, and (f) creating an open framework

for reusing open-source tool assets. The project gave the

OpenMETA developers unique opportunity not only to

understand the limits of the current state-of-the-art in the

context of a real-life DoD challenge problem but also to push

the limits in several areas. We believe that the program also

provided opportunity for the developers and the research

community in general to better understand open problems and

their impact on the broad applicability of model-based design

technologies. Based on this experience we summarize below

some of the open challenges and opportunities.

1. Product and manufacturing process co-design.

Merging the relatively isolated activities in product and

manufacturing process design into an integrated co-design

process promises the largest benefits and truly

revolutionary advantages. This would be particularly

important with the increased use of composites in

manufacturing, in which the interdependence of product

models and manufacturing process models is large and

not understood well. While the OpenMETA design space

exploration process incorporated feedback from

manufacturability analysis, full integration was not

achieved yet

2. Configurable domain-specific design environments.

The OpenMETA horizontal integration platforms

emerged as key enablers for the tool chain development

effort. The primary end users of OpenMETA were the

vehicle designers. Consequently, the implemented

automations and user interfaces served the designer

community. However, the development of the model, tool

and execution integration platforms – the core

contributions of OpenMETA – created opportunity for

automation and improved user interfaces for another

category of users, those, whose goal is to integrate

domain specific integrated CPS design tool chains. To

achieve progress in this area is one of our goals.

3. Integrating model-based and data-driven design.

A fundamental limitation of model-based design

processes is that models of physical components and

environments always have epistemic uncertainties.

Epistemic uncertainties originate in the lack of knowledge

or data. In complex CPS their weight and potential risk is

significant because they decrease predictive properties of

the design models and limit the confidence level of the

assurance arguments. Decreasing this uncertainty is

expensive and with the rapidly growing size and openness

of important categories of CPS is becoming unfeasible. A

promising approach of addressing this challenge is the

incorporation of data-driven machine learning methods in

the design process that will require fundamental re-

thinking its key elements from modeling to verification

and to assurance argumentation. .

ACKNOWLEDGMENT

We are grateful for the vision and leadership of Mr. Paul

Eremenko who conceived and led the program through the

crucial first two years. We also would like to express our

appreciation to Dr. Nathan Wiedenman for steering the

program through the FANG-1 design challenge and Dr. Kevin

Massey for guiding the program to its conclusion. The

OpenMETA project integrated technology components

provided by researchers from Vanderbilt, Georgia Tech, MIT,

Oregon State, SRI, PARC, and Modelon. Authors are also

grateful for the significant contributions of Mr. Adam Nagel,

Metamorph Inc. to the transitioning efforts and latest

extensions of OpenMETA. Our project benefited

tremendously from the discussions, feedback and ideas we

received from our team of collaborators, and from Dr. Mike

Lowry, Chief Engineer, and Dr. Kirstie Bellman, Chief

Scientist of the AVM program. We would also like to

recognize the importance of the guidance from the Senior

Strategy Panel including Alberto Sangiovanni Vincentelli (UC

Berkeley), Prof. Joseph Sifakis (VERIMAG), Daniel Frey

(MIT), Karl Hedrick (UC Berkeley), Olivier De Weck (MIT),

and Janos Sztipanovits (Vanderbilt).

REFERENCES

[1] S. A. Seshia, "Combining Induction, Deduction, and Structure for
Verification and Synthesis," in Proceedings of the IEEE, vol. 103,

no. 11, pp. 2036-2051, Nov. 2015

[2] Sanjit A. Seshia, Shiyan Hu, Wenchao Li, Qi Zhu, "Design
Automation of Cyber-Physical Systems: Challenges Advances

and Opportunities", Computer-Aided Design of Integrated

Circuits and Systems IEEE Transactions on, vol. 36, pp. 1421-
1434, 2017, ISSN 0278-0070.

[3] P. Nuzzo, A.L. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti,

and T. Villa, “A Platform-Based Design Methodology With
Contracts and Related Tools for the Design of Cyber-Physical

Systems,” in Proceedings of the IEEE, vol. 103, no. 11, pp. 2104-

2132, Nov. 2015.
[4] Joseph Sifakis, “System Design Automation: Challenges and

Limitations,” in Proceedings of the IEEE, vol. 103, no. 11, pp.

2093-2103, Nov. 2015.
[5] Eremenko, Paul: “Philosophical Underpinnings of Adaptive

Vehicle Make,” DARPA-BAA-12-15. Appendix 1, December 5,

2011.
[6] Sztipanovits, J., Bapty, T., Neema, S., Koutsoukos, X., Jackson,

E. “Design Tool Chain for Cyber Physical Systems: Lessons

Learned,” In Proceedings of DAC’15, pp. 106, June 07 - 11,

2015, San Francisco, CA, USA.

[7] Ackerman, Spencer: "This Is the Million-Dollar Design for

Darpa's Crowdsourced Swimming Tank". Wired. (22 April 2013)
(Retrieved 24 April 2013, https://www.wired.com/2013/04/darpa-

fang-winner).

[8] Olivier L de Weck, Eun Suk Suh. “Complex System Design
through Crowdsourcing : DARPA FANG - 1 as a Case Study,”

Industrial Engineering Magazine 21(4), 2014.12, 32-37, url:

http://www.dbpia.co.kr/Article/NODE06085424.
[9] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D.

Ratiu. Seamless model-based development: From isolated tools

to integrated model engineering environments. Proc. of the IEEE,
98(4):526 –545, 2010.

0250-SIP-2017-PIEEE

22

[10] D’Ambrosio, J., Bapty, T., Jackson, E.,Paunicka, J., Sztipanovits,

Comprehensive Transitioning Model for AVM Tools – Boeing,
GM Research, Microsoft Research, Metamorph, Vanderbilt

White Paper response to DARPA –SN-14-04, October 31, 2013.

[11] Pinto A, Bonivento A, Sangiovanni-Vincentelli AL, Passerone R,
Sgroi M. System level design paradigms: Platform-based design

and communication synthesis. ACM Transactions on Design

Automation of Electronic Systems, 2004 Jun;11(3):537–563.
[12] E. A. Lee, “CPS foundations,” in Proc. 47th Design Automation

Conference (DAC), 2010, Anaheim, CA, USA, Jul. 2010, pp.

737–742
[13] Lattmann, Zs., Nagel, A., Scott, J., Smyth, K., vanBuskirk, C.,

Porter, J., Neema, S., Bapty, T., Sztipanovits, J.: “Towards

Automated Evaluation of Vehicle Dynamics in System-Level
Design,” Proceedings of the ASME 2012 International Design

Engineering Technical Conferences & Computers and

Information in Engineering Conference IDETC/CIE 2012 August
12-15, 2012, Chicago, IL

[14] Simko, G., Levendovszky, T., Neema, S., Jackson, E., Bapty, T.,

Porter, J., Sztipanovits, J.: “Foundation for Model Integration:
Semantic Backplane” Proceedings of the ASME 2012

International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference
IDETC/CIE 2012 August 12-15, 2012, Chicago, IL

[15] Wrenn, R., Nagel, A., Owens, R., Yao, D., Neema, H., Shi, F.,

Smyth, K., vanBuskirk, C., Porter, J., Bapty, T., Neema, S.,
Sztipanovits, J., Ceisel, J., Mavris, D.: “Towards Automated

Exploration and Assembly of Vehicle Design Models,”
Proceedings of the ASME 2012 International Design Engineering

Technical Conferences & Computers and Information in

Engineering Conference IDETC/CIE 2012 August 12-15, 2012,
Chicago, IL

[16] G. Karsai, A. Ledeczi, S. Neema, and J. Sztipanovits, “The

Model-Integrated Computing Toolsuite: Metaprogrammable
Tools for Embedded Control System Design,” 2006, pp. 50–55

[17] Alberto Sangiovanni-Vincentelli, Sandeep Shukla, Janos

Sztipanovits, Guang Yang: “Metamodeling: An Emerging
representation Paradigm for System-Level Design,” IEEE Design

and Test of Computers May/June 2009

[18] http://openmdao.org
[19] IEEE 1516.1–2010 – Standard for Modeling and Simulation High

Level Architecture – Federate Interface Specification

[20] IEEE 1516–2010 – Standard for Modeling and Simulation High
Level Architecture – Framework and Rules,” pp. 1–38, 2010.

[21] Juracz, L., Z. Lattmann, T. Levendovszky, G. Hemingway, W.

Gaggioli, T. Netterville, G. Pap, K. Smyth, and L. Howard.
“VehicleFORGE: A Cloud-Based Infrastructure for Collaborative

Model-Based Design,” Proceedings of the 2nd International

Workshop on Model-Driven Engineering for High Performance
and Cloud Computing (MDHPCL 2013). Co-located with 16th

International Conference on Model Driven Engineering

Languages and Systems (MODELS 2013) l. Vol-1118. Chapter
252014

(url:http://www.isis.vanderbilt.edu/sites/default/files/MDHPCL%

202013%2004-paper.pdf
[22] Sangiovanni-Vincentell, Alberto: Quo Vadis, SLD? Reasoning

About the Trends and Challenges of System Level Design,

Proceedings of the IEEE, vol. 95, No. 3, pp 467-506, March 2007
[23] Nuzzo, P.; Xu, H.; Ozay, N.; Finn, J. B.; Sangiovanni-

Vincentelli, A. L.; Murray, R. M.; Donzé, A.; Seshia, S. A, “A

contract-based methodology for aircraft electric power system
design.,” in EEE Access, Vol. 2, p. 1-25. January 01, 2014.

[24] Jackson, E., Sztipanovits, J.: ‘Formalizing the Structural

Semantics of Domain-Specific Modeling Languages,” Journal of
Software and Systems Modeling Volume 8, Issue 4, pp. 451-478,

September 2009.

[25] Kai Chen, Janos Sztipanovits, Sandeep Neema: “Compositional
Specification of Behavioral Semantics,” in Design, Automation,

and Test in Europe: The Most Influential Papers of 10 Years

DATE, Rudy Lauwereins and Jan Madsen (Eds), Springer 2008.
[26] E. K. Jackson, T. Levendovszky, and D. Balasubramanian,

“Reasoning about Metamodeling with Formal Specifications and

Automatic Proofs,” in Model Driven Engineering Languages and
Systems, vol. 6981, J. Whittle, T. Clark, and T. Kühne, Eds. pp.

653–667, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[27] http://research.microsoft.com/formula

[28] Michael R. Myers, Richard E. Gregory, Joseph E. Hite, Sandeep
Neema and Ted Bapty, “Collaborative Design in DARPA’s

FANG I Challenge,” ASME 2013 International Mechanical

Engineering Congress and Exposition Volume 12: Systems and
Design San Diego, California, USA, November 15–21, 2013.

[29] Adrian Pop, Martin Sjölund, Adeel Ashgar, Peter Fritzson, and

Francesco Casella. Integrated Debugging of Modelica Models.
Modeling, Identification and Control, 35(2):93--107, 2014.

[30] https://openmodelica.org

[31] Jackson, E., Simko, G., Sztipanovits, J.: “Diversely Enumerating
System Level Architectures,” Proceedings of EMSOFT 2013,

Embedded Systems Week, September 29-October 4, 2013

Montreal, CA.
[32] Eker, J.; Janneck, J.W.; Lee, E.A.; Jie Liu; Xiaojun Liu; Ludvig,

J.; Neuendorffer, S.; Sachs, S.; Yuhong Xiong: “Taming

heterogeneity – the Ptolemy approach,” Proceedings of the IEEE,
Vol. 91, No.1., pp. 127-144, January, 2003.

[33] Lee, E.A., Seshia, S.A. “Introduction to Embedded Systems,: A

Cyber-Physical System Approach,” 2nd. Ed. LeeSeshia.org. 2015.
[Online] Available: http://leeseshia.org

[34] Simulink: http://www.mathworks.com/products/simulink/

[35] J. Porter, G. Hemingway, Nine, H., van Buskirk, C., Kottenstette,
N., Karsai, G.,and Sztipanovits, J. The ESMoL language and

tools for high-confidence distributed control systems design. part

1: Design language, modeling framework, and analysis. Tech.
Report ISIS-10-109, ISIS, Vanderbilt Univ., Nashville, TN, 2010

[36] Functional Mock-up Interface – www.fmi-standard.org
[37] Modelica Association: Modelica – A Unified Object-Oriented

Language for Physical Systems Modeling. Language

Specification, Version 3.2, March 24, 2010:
www.modelica.org/documentas/ModelicaSpec32.pdf

[38] Karnopp, Dean C., Margolis, Donald L., Rosenberg, Ronald C.,

1990: System dynamics: a unified approach, Wiley, ISBN 0-471-
62171-4.

[39] Jan C. Willems: “The Behavioral Approach to Open and

Interconnected Systems,” IEEE Control Systems Magazine, pp.
46-99, December 2007.

[40] Siyuan Dai and Xenofon Koutsoukos. "Model-Based Automotive

Control Design Using Port-Hamiltonian Systems", International
Conference on Complex Systems Engineering (ICCSE 2015),

University of Connecticut, November 9-10, 2015.

[41] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone,
“Taming Dr. Frankenstein: Contract-based design for cyber-

physical systems,” European. Journal of Control, vol. 18, no. 3,

pp. 217–238, 2012. [Online].
http://www.sciencedirect.com/science/article/pii/S094735801270

9433

[42] Gabor Simko, Janos Sztipanovits: “Model Integration in CPS,” in
Raj Rajkumar, Dioniso de Niz, Mark Klein (Ed.) Cyber Physical

Systems, pp 331-360, Addison-Wesley (2017) ISBN-13:978-0-

321-92696-8
[43] Simko, G., Lindecker, D., Levendovszky, T., Neema, S.,

Sztipanovits, J.: “Specification of cyber-physical components

with formal semantics - integration and composition. In:
ACM/IEEE 16th International Conference on Model Driven

Engineering Languages and Systems (MODELS 2013)

[44] Simko, G., Lindecker, D., Levendovszky, T., Jackson, E.K.,
Neema, S., Sztipanovits, J.: A framework for unambiguous and

extensible specification of DSMLs for cyber-physical systems.

In: IEEE 20th International Conference and Workshops on the
Engineering of Computer Based Systems (ECBS 2013)

[45] Bjørner, N., Ken McMillan and Rybalchenko. A., Higher-order

Program Verification as Satisfiability Modulo Theories with
Algebraic Data-types. In informal proceedings of HOPA 2013

(Workshop on Higher-Order Program Analysis).

[46] Desai, A., Vivek G., Jackson, E., Qadeer, E. Rajamani, S., and
Zufferey, D.:. P: Safe asynchronous event-driven programming.

In Proceedings of ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI 2013).
[47] Jackson, E.: Engineering of domain-speciifc languages with

FORMULA 2. HILT '13 Proceedings of the 2013 ACM SIGAda

annual conference on High Integrity Language Technology.
[48] P. Antsaklis (Ed.). Proceedings of the IEEE, Special issue on

hybrid systems: Theory and Applications, 88(7), 2000.

http://openmdao.org/
http://www.isis.vanderbilt.edu/sites/default/files/MDHPCL%202013%2004-paper.pdf
http://www.isis.vanderbilt.edu/sites/default/files/MDHPCL%202013%2004-paper.pdf
http://research.microsoft.com/formula
http://leeseshia.org/
http://www.fmi-standard.org/
http://www.modelica.org/documentas/ModelicaSpec32.pdf
http://www.sciencedirect.com/science/article/pii/S0947358012709433
http://www.sciencedirect.com/science/article/pii/S0947358012709433

0250-SIP-2017-PIEEE

23

[49] D.S. Weld and J. De Kleer (Eds.). Readings in qualitative

reasoning about physical systems. Morgan Kaufmann, 2013.
[50] Ashish Tiwari. "HybridSAL relational abstracter." Computer

Aided Verification. Springer Berlin/Heidelberg, 2012.

[51] de Kleer, Johan, et al. "Fault augmented Modelica models." The
24th International Workshop on Principles of Diagnosis. 2013.

[52] Honda, Tomonori, et al. "A simulation and modeling based

reliability requirements assessment methodology." ASME 2014
International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference.

American Society of Mechanical Engineers, 2014.
[53] Hoyle, C., et al. “Multi-Stage Uncertainty Quantification for

Verifying the Correctness of Complex System Designs”. ASME

2011 International Design Engineering Technical Conferences.
2011. Washington DC: ASME.

[54] A. Saltelli, S. Tarantola, and F. Campolongo. "Sensitivity

analysis as an ingredient of modeling." Statistical Science, 377-
395, 2000.

[55] Lattmann, Z. “An Analysis-Driven Rapid Design Process for

Cyber-Physical Systems”. PhD thesis. Vanderbilt University.
2016.

[56] Bryant R., “Symbolic Manipulation with Ordered Binary

Decision Diagrams,” School of Computer Science, Carnegie
Mellon University, Technical Report CMU-CS-92-160, July

1992.

[57] Bapty, T., Neema S., Scott J., Sztipanovits J., and Asaad S.,
"Model-Integrated Tools for the Design of Dynamically

Reconfigurable Systems," VLSI Design, vol. 10, no. 3, pp 281—
306, 2000.

[58] Mohanty, S., Prasanna V., Neema S., and Davis J., “Rapid

Design Space Exploration of Heterogeneous Embedded Systems
using Symbolic Search and Multi-Granular Simulation,”

Workshop on Languages, Compilers, and Tools for Embedded

Systems (LCTES), ACM SIGPLAN Notices, vol. 37, issue 7, pp
18-27, Berlin, Germany, 2002.

[59] Neema, S., Sztipanovits, J., Karsai, G, Butts, K.: „Constraint-

Based Design Space Exploration and Model Synthesis,“ Proc. of
EMSOFT’2003, Philadelphia, PA, October 2003.

[60] Neema, H., Z. Lattmann, P. Meijer, J. Klingler, S. Neema, T.

Bapty, J. Sztipanovits, and G. Karsai, "Design Space Exploration
and Manipulation for Cyber Physical Systems", IFIP First

International Workshop on Design Space Exploration of Cyber-

Physical Systems (IDEAL' 2014), Berlin, Germany, Springer,
04/2014.

[61] Lattmann Z., Pop A., Kleer J., Fritzson P., Janssen B., Neema S.,

Bapty T., Koutsoukos X., Klenk M., Bobrow D., Saha B.,
Kurtoglu T. (2014). “Verification and Design Exploration

through Meta Tool Integration with OpenModelica”. In:

Proceedings of the 10th International Modelica Conference. Lund
University, olvegatan 20A, SE-223 62 LUND, SWEDEN:

Modelica Association and Linoping University Electronic Press,

pp. 353–362
[62] Jordi CabotMartin Gogolla: Object Constraint Language (OCL):

A Definitive Guide. In Marco Bernardo, Vittorio Cortellessa,

Alfonso Pierantonio (Eds.) Formal Methods for Model-Driven
Engineering, 12th International School on Formal Methods for

the Design of Computer, Communication, and Software Systems,

SFM 2012, Bertinoro, Italy, June 18-23, 2012. Springer LNCS
Vol. 7320..

[63] Lee, Edward A. "Cyber physical systems: Design challenges."

In Object oriented real-time distributed computing (ISORC),
2008 11th ieee international symposium on, pp. 363-369. IEEE,

2008.

[64] Emerson, E. Allen. "Temporal and modal logic." In Handbook of
Theoretical Computer Science, Volume B: Formal Models and

Sematics (B) pp. 99-1072, MIT Press Cambridge, MA, USA,

1990.
[65] Sztipanovits, J., Bapty, T., Lattmann, Zs., Neema, S.:

Composition and Compositionality ion CPS. In Griffor, E., (Ed)

Handbook of System Safety and Security: Cyber Risk
Management, Cyber Security, Threat Analysis, Functional

Safety, Software Systems, and Cyber-Physical Systems. Elsevier,

2017
[66] Himanshu Neema, Jesse Gohl, Zsolt Lattmann, Janos

Sztipanovits, Gabor Karsai, Sandeep Neema, Ted Bapty, John

Batteh, Hubertus Tummescheit, Chandrasekar Sureshkumar:

“Model-Based Integration Platform for FMI Co-Simulation and
Heterogeneous Simulations of Cyber-Physical Systems,”

Proceedings of the 10th International Modelica Conference, pp.

235-245, March 10-12, 2014, Lund, Sweden
[67] Gorissen, D., Couckuyt, I., Demeester, P., Dhacne, T. “A

Surrogate Modeling and Adaptive Sampling Toolbox for

Computer Based Design,” Journal of Machine Learning Research
11 (2010) 2051-2055

[68] Ounpraseuth, S. “Gaussian Processes for Machine Learning,”

Journal of the American Statistical Association, 103:481, 429-
429, 2008. DOI: 10.1198/jasa.2008.s219

[69] Yakov Ben-Haim, “Order and Indeterminism: An Info-Gap

Perspective,” in M. Boumans, G. Hon and A. Petersen (eds.)
Error and Uncertainty in Scientific Practice, pp. 157-175

Pickering and Chatto Publishers, London, 2014.

[70] http://openmdao.org

